Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G147-G157, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129245

RESUMEN

Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model. Although the overwhelming majority of global homozygous midnolin knockout mice demonstrated embryonic lethality, heterozygous knockout mice were observed to be similar to wild-type mice in their viability and were used to determine the effect of reduced midnolin expression on NAFLD. We found that global heterozygous midnolin knockout attenuated the severity of NAFLD in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism. Collectively, our results support a role for midnolin in regulating cholesterol/lipid metabolism in the liver. Thus, midnolin may represent a novel therapeutic target for NAFLD. Finally, our observation that midnolin was essential for survival underscores the broad importance of this gene beyond its role in liver biology.NEW & NOTEWORTHY We have developed and now report on the first functional global midnolin knockout mouse model. We found that global heterozygous midnolin knockout attenuated the severity of nonalcoholic fatty liver disease (NAFLD) in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fructosa/metabolismo , Dieta Alta en Grasa/métodos , Hígado/metabolismo , Colesterol/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
J Lipid Res ; 61(8): 1142-1149, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32482717

RESUMEN

LCAT converts free cholesterol to cholesteryl esters in the process of reverse cholesterol transport. Familial LCAT deficiency (FLD) is a genetic disease that was first described by Kaare R. Norum and Egil Gjone in 1967. This report is a summary from a 2017 symposium where Dr. Norum recounted the history of FLD and leading experts on LCAT shared their results. The Tesmer laboratory shared structural findings on LCAT and the close homolog, lysosomal phospholipase A2. Results from studies of FLD patients in Finland, Brazil, Norway, and Italy were presented, as well as the status of a patient registry. Drs. Kuivenhoven and Calabresi presented data from carriers of genetic mutations suggesting that FLD does not necessarily accelerate atherosclerosis. Dr. Ng shared that LCAT-null mice were protected from diet-induced obesity, insulin resistance, and nonalcoholic fatty liver disease. Dr. Zhou presented multiple innovations for increasing LCAT activity for therapeutic purposes, whereas Dr. Remaley showed results from treatment of an FLD patient with recombinant human LCAT (rhLCAT). Dr. Karathanasis showed that rhLCAT infusion in mice stimulates cholesterol efflux and suggested that it could also enhance cholesterol efflux from macrophages. While the role of LCAT in atherosclerosis remains elusive, the consensus is that a continued study of both the enzyme and disease will lead toward better treatments for patients with heart disease and FLD.


Asunto(s)
Investigación Biomédica , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Animales , Humanos
3.
Curr Opin Lipidol ; 29(2): 104-109, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29369831

RESUMEN

PURPOSE OF REVIEW: Lecithin cholesterol acyltyransferase (LCAT) deficiency is a rare monogenic disorder causing lipoprotein dysregulation and multiple organ dysfunctions, including renal impairment. LCAT knockout mice have been shown informative in elucidating mechanisms of many major clinical morbid phenotypes. Extended characterization of the LDL receptor/LCAT double knockout (Ldlr/Lcat-DKO or DKO) mice had led to the discovery of a number of novel protective metabolic phenotypes, including resistance to obesity, nonalcoholic steatohepatitis (NASH) and insulin resistance. We seek to integrate the findings to explore novel pathogenic pathways. RECENT FINDINGS: The chow fed DKO mice were found more insulin sensitive than their Ldlr-KO controls. Joint analyses of the three strains (DKO, Ldlr-KO and wild-type) revealed differential metabolic responses to a high cholesterol diet (HCD) vs. high-fat diet (HFD). DKO mice are protected from HFD-induced obesity, hepatic endoplasmic reticulum (ER) stress, insulin resistance, ER cholesterol and NASH markers (steatosis and inflammasomes). Joint analysis revealed the HFD-induced NASH is dependent on de-novo hepatic cholesterol biosynthesis. DKO mice are protected from HCD-induced hepatic ER stress, ER cholesterol, but not NASH, the latter likely due to cholesterol crystal accumulation. DKO mice were found to develop ectopic brown adipose tissue (BAT) in skeletal muscle. Ectopic BAT derived in part from myoblast in utero and from adult satellite cells. Primed expression of PRDM16 and UCP in quiescent satellite cell caused by LCAT deficiency synergizes with cell cholesterol depletion to induce satellite cell-to-BAT transdifferentiation. SUMMARY: Metabolic phenotyping of selective LCAT null mice led to the discovery of novel metabolically protective pathways.


Asunto(s)
Fenotipo , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Animales , Colesterol/metabolismo , Grasas de la Dieta/farmacología , Técnicas de Inactivación de Genes , Ratones
4.
Biochim Biophys Acta ; 1861(7): 594-605, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27090939

RESUMEN

Non-alcoholic steatohepatitis (NASH), is the form of non-alcoholic fatty liver disease posing risk to progress into serious long term complications. Human and pre-clinical models implicate cellular cholesterol dysregulation playing important role in its development. Mouse model studies suggest synergism between dietary cholesterol and fat in contributing to NASH but the mechanisms remain poorly understood. Our laboratory previously reported the primary importance of hepatic endoplasmic reticulum cholesterol (ER-Chol) in regulating hepatic ER stress by comparing the responses of wild type, Ldlr-/-xLcat+/+ and Ldlr-/-xLcat-/- mice, to a 2% high cholesterol diet (HCD). Here we further investigated the roles of ER-Chol and ER stress in HFHS diet-induced NASH using the same strains. With HFHS diet feeding, both WT and Ldlr-/-xLcat+/+ accumulate ER-Chol in association with ER stress and inflammasome activation but the Ldlr-/-xLcat-/- mice are protected. By contrast, all three strains accumulate cholesterol crystal, in correlation with ER-Chol, albeit less so in Ldlr-/-xLcat-/- mice. By comparison, HCD feeding per se (i) is sufficient to promote steatosis and activate inflammasomes, and (ii) results in dramatic accumulation of cholesterol crystal which is linked to inflammasome activation in Ldlr-/-xLcat-/- mice, independent of ER-Chol. Our data suggest that both dietary fat and cholesterol each independently promote steatosis, cholesterol crystal accumulation and inflammasome activation through distinct but complementary pathways. In vitro studies using palmitate-induced hepatic steatosis in HepG2 cells confirm the key roles by cellular cholesterol in the induction of steatosis and inflammasome activations. These novel findings provide opportunities for exploring a cellular cholesterol-focused strategy for treatment of NASH.


Asunto(s)
Colesterol en la Dieta/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Receptores de LDL/genética , Animales , Colesterol en la Dieta/efectos adversos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Femenino , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Metabolismo de los Lípidos/genética , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Oxidación-Reducción , Ácido Palmítico/farmacología , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Receptores de LDL/deficiencia , Transducción de Señal
6.
J Biol Chem ; 290(51): 30514-29, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26494623

RESUMEN

Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis , Diferenciación Celular , Colesterol/metabolismo , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Adipocitos Marrones/patología , Animales , Colesterol/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/patología , Ratones , Ratones Noqueados , Células Satélite del Músculo Esquelético/patología
8.
Crit Rev Clin Lab Sci ; 51(6): 321-31, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25115413

RESUMEN

In recent years, the high-density lipoprotein (HDL) hypothesis has been challenged. Several completed randomized clinical trials continue to fall short in demonstrating HDL, or at least HDL-cholesterol (HDL-C) levels, as being a consistent target in the prevention of cardiovascular diseases. However, population studies and findings in lipid modifying trials continue to strongly support HDL-C as a superb risk predictor. It is increasingly evident that the complexity of HDL metabolism confounds the use of HDL-C concentration as a unified target. However, important insights continue to emerge from the post hoc analyses of recently completed (i) fibrate-based FIELD and ACCORD trials, including the unexpected beneficial effect of fibrates in microvascular diseases, (ii) the niacin-based AIM-HIGH and HPS2-THRIVE studies, (iii) recombinant HDL-based as well as (iv) the completed CETP inhibitor-based trials. These together with on-going mechanistic studies on novel pathways, which include the unique roles of microRNAs, post-translational remodeling of HDL and novel pathways related to HDL modulators will provide valuable insights to guide how best to refocus and redesign the conceptual framework for selecting HDL-based targets.


Asunto(s)
HDL-Colesterol , Hipolipemiantes , MicroARNs , Enfermedades Cardiovasculares , Ácidos Fíbricos , Humanos , Hiperlipidemias , Niacina
9.
J Biol Chem ; 287(24): 20755-68, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22500017

RESUMEN

We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr-/-xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr-/-xLcat-/- mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr-/-xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr-/-xLcat-/- mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr-/-xLcat-/- mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr-/-xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr-/-xLcat-/- mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance.


Asunto(s)
Colesterol/metabolismo , Estrés del Retículo Endoplásmico , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Hígado/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa , Receptores de LDL/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8 , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Animales , Colesterol/genética , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Regulación de la Expresión Génica/genética , Resistencia a la Insulina/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/patología , Lipoproteínas/biosíntesis , Lipoproteínas/genética , Hígado/patología , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de LDL/genética , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Esterol O-Aciltransferasa 2
10.
Biochim Biophys Acta ; 1821(4): 654-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22326749

RESUMEN

Lecithin cholesterol acyltransferase (LCAT) is the key enzyme in mediating the esterification of cholesterol on circulating lipoproteins. It has long been suggested that LCAT plays a crucial role in reverse cholesterol transport, a process depicting the removal of cellular cholesterol through efflux to high density lipoproteins (HDL) and its delivery to the liver for eventual excretion from the body. Although loss-of-function LCAT mutations invariably result in profound HDL deficiency, the role of LCAT in atherogenesis continues to be clouded with controversy. Increasing number of large scale, population-based studies failed to detect an elevated cardiac risk with reduced blood levels of LCAT, suggesting that reduced LCAT activity may not be a risk factor nor a therapeutic target. More recent studies in human LCAT gene mutation carriers tend to suggest that atherogenicity in LCAT deficiency may be dependent on the nature of the mutations, providing plausible explanations for the otherwise contradictory findings. Genetic models of LCAT excess or deficiency yielded mixed findings. Despite its known profound effects on HDL and triglyceride metabolism, the role of LCAT in metabolic disorders, including obesity and diabetes, has not received much attention. Recent studies in LCAT deficient mouse models suggest that absence of LCAT may protect against insulin resistance, diabetes and obesity. Coordinated modulation of a number of anti-obesity and insulin sensitizing pathways has been implicated. Further studies to explore the role of LCAT in the modulation of cardiometabolic disorders and the underlying mechanisms are warranted.


Asunto(s)
Aterosclerosis/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Animales , Aterosclerosis/enzimología , Aterosclerosis/genética , Colesterol/sangre , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Humanos , Resistencia a la Insulina/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/enzimología , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Lipoproteínas HDL/sangre , Ratones , Obesidad/enzimología , Obesidad/genética , Obesidad/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Fosfatidilcolina-Esterol O-Aciltransferasa/genética
12.
J Biol Chem ; 286(20): 17809-20, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454561

RESUMEN

Complete lecithin cholesterol acyltransferase (LCAT) deficiency uniformly results in a profound HDL deficiency. We recently reported unexpected enhanced insulin sensitivity in LCAT knock-out mice in the LDL receptor knock-out background (Ldlr(-/-)×Lcat(-/-); double knock-out (DKO)), when compared with their Ldlr(-/-)×Lcat(+/+) (single knock-out (SKO)) controls. Here, we report that LCAT-deficient mice (DKO and Lcat(-/-)) are protected against high fat high sucrose (HFHS) diet-induced obesity without hypophagia in a gender-specific manner compared with their respective (SKO and WT) controls. The metabolic phenotypes are more pronounced in the females. Changes in endoplasmic reticulum stress were examined as a possible mechanism for the metabolic protection. The female DKO mice developed attenuated HFHS-induced endoplasmic reticulum stress as evidenced by a lack of increase in mRNA levels of the hepatic unfolded protein response (UPR) markers Grp78 and CHOP compared with SKO controls. The DKO female mice were also protected against diet-induced insulin resistance. In white adipose tissue of chow-fed DKO mice, we also observed a reduction in UPR, gene markers for adipogenesis, and markers for activation of Wnt signaling. In skeletal muscles of female DKO mice, we observed an unexpected increase in UCP1 in association with increase in phospho-AMPKα, PGC1α, and UCP3 expressions. This increase in UCP1 was associated with ectopic islands of brown adipocytes between skeletal muscle fibers. Our findings suggest that LCAT deficiency confers gender-specific protection against diet-induced obesity and insulin resistance at least in part through regulation in UPR, white adipose tissue adipogenesis, and brown adipocyte partitioning.


Asunto(s)
Resistencia a la Insulina , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Obesidad/metabolismo , Receptores de LDL/metabolismo , Caracteres Sexuales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Chaperón BiP del Retículo Endoplásmico , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Obesidad/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Receptores de LDL/genética , Sacarosa/administración & dosificación , Sacarosa/efectos adversos , Edulcorantes/administración & dosificación , Edulcorantes/efectos adversos , Transactivadores/genética , Transactivadores/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción , Proteína Desacopladora 1 , Proteína Desacopladora 3 , Respuesta de Proteína Desplegada/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
13.
Biochim Biophys Acta ; 1811(1): 39-45, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21044894

RESUMEN

Recent studies suggest that paraoxonase-1 (PON1), complexed with high-density lipoproteins, is the major lactonase in the circulation. Using 5-hydroxy eicosatetraenoate δ-lactone (5-HETEL) as the substrate, we observed lactonase activity in serum from Pon1-/- mice. However, 6-12 carbon fatty acid γ- and δ-lactones were not hydrolyzed in serum from Pon1-/- mice. Serum from both wild-type and Pon1-/- mice contained a lactonase activity towards 5-HETEL and 3-oxo-dodecanoyl-homoserine lactone that was resistant to inactivation by EDTA. This lactonase activity was sensitive to the serine esterase inhibitor phenyl methyl sulfonyl fluoride and co-eluted with carboxylesterase activity by size-exclusion chromatography. Analysis of serum from the Es1e mouse strain, which has a deficiency in the carboxylesterase, ES-1, proved that this activity was due to ES-1. PON1 activity predominated at early time points (30 s), whereas both PON1 and ES-1 contributed equally at later time points (15 min). When both PON1 and ES-1 were inhibited, 5-HETEL was stable in mouse serum. Thus, while long-chain fatty acid lactones are substrates for PON1, they can be hydrolyzed by ES-1 at neutral pH. In contrast, medium-chain length fatty acid lactones are stable in mouse serum in the absence of PON1, suggesting that PON1 plays a specific role in the metabolism of these compounds.


Asunto(s)
Arildialquilfosfatasa/sangre , Ácidos Hidroxieicosatetraenoicos/farmacología , Lactonas/sangre , Animales , Arildialquilfosfatasa/genética , Carboxilesterasa/antagonistas & inhibidores , Carboxilesterasa/sangre , Carboxilesterasa/genética , Inhibidores Enzimáticos/farmacología , Hidrólisis , Lactonas/metabolismo , Ratones , Ratones Noqueados , Fluoruro de Fenilmetilsulfonilo/farmacología , Especificidad por Sustrato
15.
Circulation ; 120(2): 160-9, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19564558

RESUMEN

BACKGROUND: Lecithin:cholesterol acyltransferase (LCAT) catalyzes the formation of plasma cholesteryl ester, plays a key role in high-density lipoprotein metabolism, and has been believed to be critical in the process of reverse cholesterol transport (RCT). METHODS AND RESULTS: The role of LCAT in RCT from macrophages was quantified with a validated assay involving intraperitoneal injection in mice of (3)H-cholesterol-labeled J774 macrophages and monitoring the appearance of tracer in plasma, liver, bile, and feces. Human LCAT overexpression in human apolipoprotein A-I transgenic mice substantially increased plasma high-density lipoprotein cholesterol levels but surprisingly did not increase macrophage RCT. Even in the setting of coexpression of scavenger receptor BI or cholesteryl ester transfer protein, both of which promoted the transfer of LCAT-derived high-density lipoprotein cholesterol ester to the liver, LCAT overexpression still had no effect on RCT. Serum from LCAT-overexpressing mice had reduced ability to promote cholesterol efflux from macrophages ex vivo via ABCA1. To determine the effect of LCAT deficiency on macrophage RCT, LCAT(-/-) and LCAT(+/-) mice were compared with wild-type mice. Despite extremely low plasma levels of high-density lipoprotein cholesterol, LCAT-deficient mice had only a 50% reduction in RCT. LCAT(+/-) mice had normal RCT despite a significant reduction in high-density lipoprotein cholesterol. Serum from LCAT-deficient mice had increased ability to promote ABCA1-mediated cholesterol efflux from macrophages ex vivo. CONCLUSIONS: These results demonstrate that LCAT overexpression does not promote an increased rate of macrophage RCT. Although LCAT activity does become rate limiting in the context of complete LCAT deficiency, RCT is reduced by only 50% even in the absence of LCAT. These data suggest that macrophage RCT may not be as dependent on LCAT activity as has previously been believed.


Asunto(s)
Colesterol/metabolismo , Macrófagos/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico/fisiología , Antígenos CD36/metabolismo , Línea Celular , Células Cultivadas , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , HDL-Colesterol/metabolismo , Femenino , Humanos , Inyecciones Intraperitoneales , Macrófagos/citología , Ratones , Ratones Noqueados , Ratones Transgénicos
18.
Cardiovasc Pathol ; 17(4): 226-32, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18402813

RESUMEN

BACKGROUND: Paraoxonase-1 is a polymorphic enzyme that is strongly associated with circulating high-density lipoproteins. The absence of paraoxonase-1 in mice has been shown to promote diet-induced atherosclerosis. As paraoxonase-1 has been recently shown to be a lactonase, its functional role remains to be fully elucidated. We explored additional vascular changes in Pon1 knockout mice in the absence of atherogenic diet challenge. METHODS: Early steps in atherogenesis, namely, leukocyte rolling and firm adhesion, were measured using intravital microscopy. Vascular oxidative status was determined by lucigenin-derived chemiluminescence. Arterial thrombosis was determined by in vivo carotid thrombosis assay. Gene expressions were determined by reverse transcription polymerase chain reaction. RESULTS: We observed a twofold increase in leukocyte adhesion, but no significant change in leukocyte rolling in Pon1(-/-) mice versus wild-type controls. This finding is correlated with a 1.6-fold increase in aortic mRNA levels of P-selectin (P<.016), a 1.3-fold up-regulation in Vcam1 (P=.096), and a 1.5-fold up-regulation in Icam1 (P=.016). Aortic Tnfalpha mRNA expression was unchanged. Pon1(-/-) mice were also found to show a threefold increase in aortic superoxide production rate (P=.04). Furthermore, carotid thrombosis assay revealed a 57% reduction in time to occlusion in Pon1(-/-) mice (P<.001). In spite of such vascular proinflammatory phenotypes, we observed no change in plasma levels of inflammatory cytokines or in hepatic mRNA expression of serum amyloid A. CONCLUSION: Our data revealed significant vascular changes in adhesion, oxidative stress, and thrombotic tendencies in Pon1(-/-) mice in the absence of hyperlipidemia and systemic inflammation.


Asunto(s)
Arildialquilfosfatasa/deficiencia , Lípidos/sangre , Estrés Oxidativo , Trombosis/enzimología , Vasculitis/enzimología , Animales , Aorta/química , Aorta/metabolismo , Arildialquilfosfatasa/genética , Adhesión Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Rodamiento de Leucocito/fisiología , Leucocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Selectina-P/genética , Selectina-P/metabolismo , ARN Mensajero/metabolismo , Superóxidos/metabolismo , Trombosis/genética , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Vasculitis/genética
20.
J Mol Cell Biol ; 9(5): 384-394, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992163

RESUMEN

Insulin can stimulate hepatic expression of carbohydrate-responsive element-binding protein (ChREBP). As recent studies revealed potential metabolic beneficial effects of ChREBP, we asked whether its expression can also be regulated by the dietary polyphenol curcumin. We also aimed to determine mechanisms underlying ChREBP stimulation by insulin and curcumin. The effect of insulin on ChREBP expression was assessed in mouse hepatocytes, while the effect of curcumin was assessed in mouse hepatocytes and with curcumin gavage in mice. Chemical inhibitors for insulin signaling molecules were utilized to identify involved signaling molecules, and the involvement of p21-activated protein kinase 1 (Pak1) was determined with its chemical inhibitor and Pak1-/- hepatocytes. We found that both insulin and curcumin-stimulated ChREBP expression in Akt-independent but MEK/ERK-dependent manner, involving the inactivation of the transcriptional repressor Oct-1. Aged Pak1-/- mice showed reduced body fat volume. Pak1 inhibition or its genetic deletion attenuated the stimulatory effect of insulin or curcumin on ChREBP expression. Our study hence suggests the existence of a novel signaling cascade Pak1/MEK/ERK/Oct-1 for both insulin and curcumin in exerting their glucose-lowering effect via promoting hepatic ChREBP production, supports the recognition of beneficial functions of ChREBP, and brings us a new overview on dietary polyphenols.


Asunto(s)
Curcumina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Insulina/farmacología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Quinasas p21 Activadas/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Insulina/metabolismo , Masculino , Ratones , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinasas p21 Activadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA