Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917347

RESUMEN

The annotation of metabolites detected in LC-MS-based untargeted metabolomics studies routinely applies accurate m/z of the intact metabolite (MS1) as well as chromatographic retention time and MS/MS data. Electrospray ionization and transfer of ions through the mass spectrometer can result in the generation of multiple "features" derived from the same metabolite with different m/z values but the same retention time. The complexity of the different charged and neutral adducts, in-source fragments, and charge states has not been previously and deeply characterized. In this paper, we report the first large-scale characterization using publicly available data sets derived from different research groups, instrument manufacturers, LC assays, sample types, and ion modes. 271 m/z differences relating to different metabolite feature pairs were reported, and 209 were annotated. The results show a wide range of different features being observed with only a core 32 m/z differences reported in >50% of the data sets investigated. There were no patterns reporting specific m/z differences that were observed in relation to ion mode, instrument manufacturer, LC assay type, and mammalian sample type, although some m/z differences were related to study group (mammal, microbe, plant) and mobile phase composition. The results provide the metabolomics community with recommendations of adducts, in-source fragments, and charge states to apply in metabolite annotation workflows.

3.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913418

RESUMEN

Lactobacillus paracasei DG is a bacterial strain with recognized probiotic properties and is used in commercial probiotic products. However, the mechanisms underlying its probiotic properties are mainly unknown. In this study, we tested the hypothesis that the ability of strain DG to interact with the host is at least partly associated with its ability to synthesize a surface-associated exopolysaccharide (EPS). Comparative genomics revealed the presence of putative EPS gene clusters in the DG genome; accordingly, EPS was isolated from the surface of the bacterium. A sample of the pure EPS from strain DG (DG-EPS), upon nuclear magnetic resonance (NMR) and chemical analyses, was shown to be a novel branched hetero-EPS with a repeat unit composed of l-rhamnose, d-galactose, and N-acetyl-d-galactosamine in a ratio of 4:1:1. Subsequently, we demonstrated that DG-EPS displays immunostimulating properties by enhancing the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and particularly that of the chemokines IL-8 and CCL20, in the human monocytic cell line THP-1. In contrast, the expression of the cyclooxygenase enzyme COX-2 was not affected. In conclusion, DG-EPS is a bacterial macromolecule with the ability to boost the immune system either as a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall. This study provides additional information about the mechanisms supporting the cross talk between L. paracasei DG and the host. IMPORTANCE: The consumption of food products and supplements called probiotics (i.e., containing live microbial cells) to potentially prevent or treat specific diseases is constantly gaining popularity. The lack of knowledge on the precise mechanisms supporting their potential health-promoting properties, however, greatly limits a more appropriate use of each single probiotic strain. In this context, we studied a well-known probiotic, Lactobacillus paracasei DG, in order to identify the constitutive molecules that can explain the documented health-promoting properties of this bacterium. We found a novel polysaccharide molecule, named DG-EPS, that is secreted by and covers the bacterium. We demonstrated that this molecule, which has a chemical structure never identified before, has immunostimulatory properties and therefore may contribute to the ability of the probiotic L. paracasei DG to interact with the immune system.


Asunto(s)
Expresión Génica , Lacticaseibacillus paracasei/fisiología , Polisacáridos Bacterianos/fisiología , Línea Celular , Humanos , Monocitos/microbiología , Ramnosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA