Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genesis ; 62(2): e23597, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38590121

RESUMEN

Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.


Asunto(s)
Bulbo Olfatorio , Órgano Vomeronasal , Ratones , Animales , Bulbo Olfatorio/fisiología , Células Receptoras Sensoriales/metabolismo , Órgano Vomeronasal/metabolismo
2.
Biochem J ; 476(18): 2561-2577, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31477623

RESUMEN

Misfolded proteins in the endoplasmic reticulum (ER) are removed through multistep processes termed ER-associated degradation (ERAD). Valosin-containing protein (VCP) plays a crucial role in ERAD as the interaction of ubiquitin fusion degradation protein 1 (Ufd1) with VCP via its SHP box motif (228F-S-G-S-G-N-R-L235) is required for ERAD. However, the mechanisms by which the VCP-Ufd1 interaction is regulated are not well understood. Here, we found that the serine 229 residue located in the Ufd1 SHP box is phosphorylated in vitro and in vivo by cyclic adenosine monophosphate-dependent protein kinase A (PKA), with this process being enhanced by either forskolin (an adenylyl cyclase activator) or calyculin A (a protein phosphatase inhibitor). Moreover, a phosphomimetic mutant (S229D) of Ufd1 as well as treatment by forskolin, calyculin A, or activated PKA strongly reduced Ufd1 binding affinity for VCP. Consistent with this, the Ufd1 S229D mutant significantly inhibited ERAD leading to the accumulation of ERAD substrates such as a tyrosinase mutant (C89R) and 3-hydroxy-3-methylglutaryl coenzyme A reductase. However, a non-phosphorylatable Ufd1 mutant (S229A) retained VCP-binding ability and was less effective in blocking ERAD. Collectively, our results support that Ufd1 S229 phosphorylation status mediated by PKA serves as a key regulatory point for the VCP-Ufd1 interaction and functional ERAD.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína que Contiene Valosina/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación Missense , Fosforilación/genética , Serina/genética , Serina/metabolismo , Proteína que Contiene Valosina/genética
3.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37808690

RESUMEN

Animals have the innate ability to select optimal defensive behavioral outputs with an appropriate intensity in response to predator threat in specific contexts. Such innate behavioral decisions are thought to be computed in the medial hypothalamic nuclei that contain neural populations directly controlling defensive behavioral outputs. The vomeronasal organ (VNO) is one of the major sensory input channels through which predator cues are detected with ascending inputs to the medial hypothalamic nuclei, especially to the ventromedial hypothalamus (VMH), through the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST). Here, we show that cat saliva contains predator cues that signal imminence of predator threat and regulate the robustness of freezing behavior through the VNO in mice. Cat saliva activates neurons expressing the V2R-A4 subfamily of sensory receptors, suggesting the existence of specific receptor groups responsible for freezing behavior induced by the predator cues. The number of VNO neurons activated in response to saliva correlates with the freshness of saliva and the intensity of freezing behavior, while the downstream neurons in the accessory olfactory bulb (AOB) and defensive behavioral circuit are quantitatively equally activated by fresh and old saliva. Strikingly, however, only the number of VMH neurons activated by fresh saliva positively correlates with the intensity of freezing behavior. Detailed analysis of the spatial distribution of fresh and old saliva-responding neurons revealed a neuronal population within the VMH that is more sensitive to fresh saliva than old saliva. Taken together, this study demonstrates that predator cues in cat saliva change over time and differentially activate the sensory-to-hypothalamus defensive behavioral pathway to modulate behavioral outputs.

4.
PLoS One ; 15(11): e0241758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33237909

RESUMEN

Ethologically relevant chemical senses and behavioral habits are likely to coadapt in response to selection. As olfaction is involved in intrinsically motivated behaviors in mice, we hypothesized that selective breeding for a voluntary behavior would enable us to identify novel roles of the chemosensory system. Voluntary wheel running (VWR) is an intrinsically motivated and naturally rewarding behavior, and even wild mice run on a wheel placed in nature. We have established 4 independent, artificially evolved mouse lines by selectively breeding individuals showing high VWR activity (High Runners; HRs), together with 4 non-selected Control lines, over 88 generations. We found that several sensory receptors in specific receptor clusters were differentially expressed between the vomeronasal organ (VNO) of HRs and Controls. Moreover, one of those clusters contains multiple single-nucleotide polymorphism loci for which the allele frequencies were significantly divergent between the HR and Control lines, i.e., loci that were affected by the selective breeding protocol. These results indicate that the VNO has become genetically differentiated between HR and Control lines during the selective breeding process. Although the role of the vomeronasal chemosensory receptors in VWR activity remains to be determined, the current results suggest that these vomeronasal chemosensory receptors are important quantitative trait loci for voluntary exercise in mice. We propose that olfaction may play an important role in motivation for voluntary exercise in mammals.


Asunto(s)
Conducta Animal , Condicionamiento Físico Animal , Órgano Vomeronasal/metabolismo , Animales , Femenino , Frecuencia de los Genes , Sitios Genéticos , Masculino , Ratones , Ratones Endogámicos ICR , Polimorfismo de Nucleótido Simple , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA