Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442687

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a global health burden. While Mtb is primarily a respiratory pathogen, it can spread to other organs, including the brain and meninges, causing TB meningitis (TBM). However, little is known about the immunological mechanisms that leads to differential disease across organs. Attention has focused on differences in T cell responses in the control of Mtb in the lungs, but emerging data point to a role for antibodies, as both biomarkers of disease control and as antimicrobial molecules. Given an increasing appreciation for compartmentalized antibody responses across the blood brain barrier, here we characterized the antibody profiles across the blood and brain compartments during TBM, and determined whether Mtb-specific humoral immune responses differed between Mtb infection of the lung (pulmonary TB) and TBM. Using a high throughput systems serology approach, we deeply profiled the antibody responses against 10 different Mtb antigens, including lipoarabinomannan (LAM) and purified protein derivative (PPD), in HIV-negative adults with pulmonary TB (n=10) vs TBM (n=60). Antibody studies included analysis of immunoglobulin isotypes (IgG, IgM, IgA) and subclass levels (IgG1-4), the capacity of Mtb-specific antibodies to bind to Fc receptors or C1q, and to activate innate immune effectors functions (complement and NK cells activation, monocyte or neutrophil phagocytosis). Machine learning methods were applied to characterize serum and CSF responses in TBM, identify prognostic factors associated with disease severity, and define the key antibody features that distinguish TBM from pulmonary TB. In individuals with TBM, we identified CSF-specific antibody profiles that marked a unique and compartmentalized humoral response against Mtb, characterized by an enrichment of Mtb-specific antibodies able to robustly activate complement and drive phagocytosis by monocytes and neutrophils, all of which were associated with milder TBM severity at presentation. Moreover, individuals with TBM exhibited Mtb-specific antibodies in the serum with an increased capacity to activate phagocytosis by monocytes, compared to individuals with pulmonary TB, despite having lower IgG titers and Fcγ receptors (FcγR)-binding capacity. Collectively, these data point to functionally divergent humoral responses depending on the site of infection (i.e. lungs vs brain), and demonstrate a highly compartmentalized Mtb-specific antibody response within the CSF during TBM. Moreover, our results suggest that phagocytosis- and complement-mediating antibodies may promote attenuated neuropathology and milder TBM disease.

2.
J Clin Microbiol ; 62(4): e0128723, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38466092

RESUMEN

Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Meníngea , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Humanos , Tuberculosis Meníngea/diagnóstico , Tuberculosis Meníngea/tratamiento farmacológico , Tuberculosis Meníngea/líquido cefalorraquídeo , Mycobacterium tuberculosis/genética , Pirazinamida , Sensibilidad y Especificidad , Rifampin/farmacología , Rifampin/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Líquido Cefalorraquídeo , Pruebas de Sensibilidad Microbiana
3.
PLOS Glob Public Health ; 3(12): e0001788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38117783

RESUMEN

Six lineages of Mycobacterium tuberculosis sensu stricto (which excludes M. africanum) are described. Single-country or small observational data suggest differences in clinical phenotype between lineages. We present strain lineage and clinical phenotype data from 12,246 patients from 3 low-incidence and 5 high-incidence countries. We used multivariable logistic regression to explore the effect of lineage on site of disease and on cavities on chest radiography, given pulmonary TB; multivariable multinomial logistic regression to investigate types of extra-pulmonary TB, given lineage; and accelerated failure time and Cox proportional-hazards models to explore the effect of lineage on time to smear and culture-conversion. Mediation analyses quantified the direct effects of lineage on outcomes. Pulmonary disease was more likely among patients with lineage(L) 2, L3 or L4, than L1 (adjusted odds ratio (aOR) 1.79, (95% confidence interval 1.49-2.15), p<0.001; aOR = 1.40(1.09-1.79), p = 0.007; aOR = 2.04(1.65-2.53), p<0.001, respectively). Among patients with pulmonary TB, those with L1 had greater risk of cavities on chest radiography versus those with L2 (aOR = 0.69(0.57-0.83), p<0.001) and L4 strains (aOR = 0.73(0.59-0.90), p = 0.002). L1 strains were more likely to cause osteomyelitis among patients with extra-pulmonary TB, versus L2-4 (p = 0.033, p = 0.008 and p = 0.049 respectively). Patients with L1 strains showed shorter time-to-sputum smear conversion than for L2. Causal mediation analysis showed the effect of lineage in each case was largely direct. The pattern of clinical phenotypes seen with L1 strains differed from modern lineages (L2-4). This has implications for clinical management and could influence clinical trial selection strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA