Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomolecules ; 12(3)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35327620

RESUMEN

Ischemic stroke is a common cerebrovascular disease and recovering blood flow as early as possible is essential to reduce ischemic damage and maintain neuronal viability, but the reperfusion process usually causes additional damage to the brain tissue in the ischemic area, namely ischemia reperfusion injury. The accumulated studies have revealed that transplantation of exogenous neural stem cells (NSCs) is an ideal choice for the treatment of ischemia reperfusion injury. At present, the source and efficacy of exogenous NSCs after transplantation is still one of the key issues that need to be resolved. In this study, human umbilical cord mesenchymal stem cells (hUC-MSCs) were obtained and induced into NSCs byadding growth factor and neuregulin1ß (NRG1ß) was introduced during the differentiation process of NSCs. Then, the rat middle cerebral artery occlusion/reperfusion (MCAO/R) models were established, and the therapeutic effects were evaluated among groups treated by NRG1ß, NSCs and NSCs pretreated with 10 nM NRG1ß (NSCs-10 nM NRG1ß) achieved through intra-arterial injection. Our data show that the NSCs-10 nM NRG1ß group significantly improves neurobehavioral function and infarct volume after MCAO/R, as well as cerebral cortical neuron injury, ferroptosis-related indexes and mitochondrial injury. Additionally, NSCs-10 nM NRG1ß intervention may function through regulating the p53/GPX4/SLC7A11 pathway, and reducing the level of ferroptosis in cells, further enhance the neuroprotective effect on injured cells.


Asunto(s)
Células Madre Mesenquimatosas , Células-Madre Neurales , Daño por Reperfusión , Animales , Humanos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Células Madre Mesenquimatosas/metabolismo , Células-Madre Neurales/metabolismo , Ratas , Daño por Reperfusión/terapia , Cordón Umbilical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA