Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Spectrosc ; 78(2): 217-226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38190986

RESUMEN

The generation and presence of excessive hypochlorous acid derivative ionic form (ClO-) could cause various diseases, such as arteriosclerosis, DNA damage, and cardiovascular illness. It is a critical need to develop a highly sensitive sensor for reliable detection of ClO- in cells and water-soluble systems. In this work, a hydroxyl group has been introduced into the compound 2-amino-3-(((E)-4-(2-(2-(2-hydroxyethoxy)ethyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)benzylidene)amino)maleonitrile (NDC) to increase its solubility in water, at the same time, the hydrazone unit was designed as a specific recognition group for the "off-on" fluorescence probe of ClO-. The probe NDC presents high selectivity, sensitivity, anti-interference, and low detection limit (67 nM) for ClO-. The recognition mechanism that ClO- breaks the C=N bond and forms the fluorescent compound 4-(2-(2-(2-hydroxyethoxy)ethyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)benzaldehyde (ND-3) has been confirmed by time-of-flight mass spectrometry. The probe NDC presents a good performance in the actual test of water samples and can be designed as the test papers for the quick and convenient detection of ClO- range from 0 to 1 µM. Moreover, the practical application was demonstrated by the successful imaging of endogenous and exogenous ClO- in HeLa cells. Our fluorescent biomass-based platform opens vast possibilities for repeatability, sensitivity, and selectivity detection of ClO- in cells and water-soluble systems.


Asunto(s)
Imagen Óptica , Agua , Humanos , Células HeLa , Biomasa , Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Ácido Hipocloroso/química
2.
Int J Biol Macromol ; : 134825, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154683

RESUMEN

The objective of this research was to fabricate pH-responsive and active films based on gellan gum (GG) and pullulan (PL) with extracts of Broussonetia papyrifera fruits (BPFE) and leaves (BPLE) by a casting method. Results indicated that the extracts had good compatibility with GG and PL, which were uniformly distributed throughout the matrix. The incorporation of BPFE and BPLE increased the thickness, UV-vis barrier property, mechanical strength, thermal stability and moisture content of the films, while decreasing the water contact angle. Notably, the films exhibited enhanced antioxidant properties, with maximum radical scavenging rates of 77.45 % using 2,2 Diphenyl-1-picrylhydrazyl and 66.21 % using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid). The antibacterial capability of the films also increased significantly after adding BPLE and BPFE. The results of XRD and FTIR showed that BPFE was bound to GG and PL by hydrogen bond. The release behavior of BPFE from the films agreed best with the first-level kinetic model. Furthermore, the films displayed obvious color responses to ammonia gas and different pH environments. Simultaneously, the films were applied to monitor the freshness of Pelteobagrus fulvidraco fish. The color parameters of the films demonstrated high correlations with the freshness indexes measured through standard laboratory procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA