Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 168(6): 1015-1027.e10, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283058

RESUMEN

Eukaryotic mRNAs generally possess a 5' end N7 methyl guanosine (m7G) cap that promotes their translation and stability. However, mammalian mRNAs can also carry a 5' end nicotinamide adenine dinucleotide (NAD+) cap that, in contrast to the m7G cap, does not support translation but instead promotes mRNA decay. The mammalian and fungal noncanonical DXO/Rai1 decapping enzymes efficiently remove NAD+ caps, and cocrystal structures of DXO/Rai1 with 3'-NADP+ illuminate the molecular mechanism for how the "deNADding" reaction produces NAD+ and 5' phosphate RNA. Removal of DXO from cells increases NAD+-capped mRNA levels and enables detection of NAD+-capped intronic small nucleolar RNAs (snoRNAs), suggesting NAD+ caps can be added to 5'-processed termini. Our findings establish NAD+ as an alternative mammalian RNA cap and DXO as a deNADding enzyme modulating cellular levels of NAD+-capped RNAs. Collectively, these data reveal that mammalian RNAs can harbor a 5' end modification distinct from the classical m7G cap that promotes rather than inhibits RNA decay.


Asunto(s)
Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Animales , Endorribonucleasas/metabolismo , Células HEK293 , Humanos , Ratones , NAD/metabolismo , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo
2.
Mol Cell ; 79(5): 797-811.e8, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750314

RESUMEN

Pausing by RNA polymerase (RNAP) during transcription elongation, in which a translocating RNAP uses a "stepping" mechanism, has been studied extensively, but pausing by RNAP during initial transcription, in which a promoter-anchored RNAP uses a "scrunching" mechanism, has not. We report a method that directly defines the RNAP-active-center position relative to DNA with single-nucleotide resolution (XACT-seq; "crosslink-between-active-center-and-template sequencing"). We apply this method to detect and quantify pausing in initial transcription at 411 (∼4,000,000) promoter sequences in vivo in Escherichia coli. The results show initial-transcription pausing can occur in each nucleotide addition during initial transcription, particularly the first 4 to 5 nucleotide additions. The results further show initial-transcription pausing occurs at sequences that resemble the consensus sequence element for transcription-elongation pausing. Our findings define the positional and sequence determinants for initial-transcription pausing and establish initial-transcription pausing is hard coded by sequence elements similar to those for transcription-elongation pausing.


Asunto(s)
ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN/métodos , Dominio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcripción Genética
3.
Mol Cell ; 70(3): 553-564.e9, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681497

RESUMEN

Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , NAD/metabolismo , Regiones Promotoras Genéticas/genética , Caperuzas de ARN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica/genética , Nucleótidos/genética , Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética/genética , Transcriptoma/genética
4.
Proc Natl Acad Sci U S A ; 119(33): e2205278119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35951650

RESUMEN

Lambdoid bacteriophage Q proteins are transcription antipausing and antitermination factors that enable RNA polymerase (RNAP) to read through pause and termination sites. Q proteins load onto RNAP engaged in promoter-proximal pausing at a Q binding element (QBE) and adjacent sigma-dependent pause element to yield a Q-loading complex, and they translocate with RNAP as a pausing-deficient, termination-deficient Q-loaded complex. In previous work, we showed that the Q protein of bacteriophage 21 (Q21) functions by forming a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of pause and termination RNA hairpins. Here, we report atomic structures of four states on the pathway of antitermination by the Q protein of bacteriophage λ (Qλ), a Q protein that shows no sequence similarity to Q21 and that, unlike Q21, requires the transcription elongation factor NusA for efficient antipausing and antitermination. We report structures of Qλ, the Qλ-QBE complex, the NusA-free pre-engaged Qλ-loading complex, and the NusA-containing engaged Qλ-loading complex. The results show that Qλ, like Q21, forms a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of RNA hairpins. However, the results show that Qλ has no three-dimensional structural similarity to Q21, employs a different mechanism of QBE recognition than Q21, and employs a more complex process for loading onto RNAP than Q21, involving recruitment of Qλ to form a pre-engaged loading complex, followed by NusA-facilitated refolding of Qλ to form an engaged loading complex. The results establish that Qλ and Q21 are not structural homologs and are solely functional analogs.


Asunto(s)
Bacteriófago lambda , Proteínas de Escherichia coli , Replegamiento Proteico , Terminación de la Transcripción Genética , Factores de Elongación Transcripcional , Proteínas Virales , Bacteriófago lambda/genética , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Conformación Proteica , Factores de Elongación Transcripcional/química , Proteínas Virales/química
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082149

RESUMEN

Reiterative transcription initiation, observed at promoters that contain homopolymeric sequences at the transcription start site, generates RNA products having 5' sequences noncomplementary to the DNA template. Here, using crystallography and cryoelectron microscopy to define structures, protein-DNA photocrosslinking to map positions of RNAP leading and trailing edges relative to DNA, and single-molecule DNA nanomanipulation to assess RNA polymerase (RNAP)-dependent DNA unwinding, we show that RNA extension in reiterative transcription initiation 1) occurs without DNA scrunching; 2) involves a short, 2- to 3-bp, RNA-DNA hybrid; and 3) generates RNA that exits RNAP through the portal by which scrunched nontemplate-strand DNA exits RNAP in standard transcription initiation. The results establish that, whereas RNA extension in standard transcription initiation proceeds through a scrunching mechanism, RNA extension in reiterative transcription initiation proceeds through a slippage mechanism, with slipping of RNA relative to DNA within a short RNA-DNA hybrid, and with extrusion of RNA from RNAP through an alternative RNA exit.


Asunto(s)
Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética/genética , ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regiones Promotoras Genéticas/genética , ARN/genética
6.
Proc Natl Acad Sci U S A ; 119(23): e2201301119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653571

RESUMEN

In σ-dependent transcriptional pausing, the transcription initiation factor σ, translocating with RNA polymerase (RNAP), makes sequence-specific protein­DNA interactions with a promoter-like sequence element in the transcribed region, inducing pausing. It has been proposed that, in σ-dependent pausing, the RNAP active center can access off-pathway "backtracked" states that are substrates for the transcript-cleavage factors of the Gre family and on-pathway "scrunched" states that mediate pause escape. Here, using site-specific protein­DNA photocrosslinking to define positions of the RNAP trailing and leading edges and of σ relative to DNA at the λPR' promoter, we show directly that σ-dependent pausing in the absence of GreB in vitro predominantly involves a state backtracked by 2­4 bp, and σ-dependent pausing in the presence of GreB in vitro and in vivo predominantly involves a state scrunched by 2­3 bp. Analogous experiments with a library of 47 (∼16,000) transcribed-region sequences show that the state scrunched by 2­3 bp­and only that state­is associated with the consensus sequence, T−3N−2Y−1G+1, (where −1 corresponds to the position of the RNA 3' end), which is identical to the consensus for pausing in initial transcription and which is related to the consensus for pausing in transcription elongation. Experiments with heteroduplex templates show that sequence information at position T−3 resides in the DNA nontemplate strand. A cryoelectron microscopy structure of a complex engaged in σ-dependent pausing reveals positions of DNA scrunching on the DNA nontemplate and template strands and suggests that position T−3 of the consensus sequence exerts its effects by facilitating scrunching.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Transcripción Genética , Microscopía por Crioelectrón , ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética
7.
Cell ; 138(1): 146-59, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596241

RESUMEN

Mycobacterium tuberculosis is arguably the world's most successful infectious agent because of its ability to control its own cell growth within the host. Bacterial growth rate is closely coupled to rRNA transcription, which in E. coli is regulated through DksA and (p)ppGpp. The mechanisms of rRNA transcriptional control in mycobacteria, which lack DksA, are undefined. Here we identify CarD as an essential mycobacterial protein that controls rRNA transcription. Loss of CarD is lethal for mycobacteria in culture and during infection of mice. CarD depletion leads to sensitivity to killing by oxidative stress, starvation, and DNA damage, accompanied by failure to reduce rRNA transcription. CarD can functionally replace DksA for stringent control of rRNA transcription, even though CarD associates with a different site on RNA polymerase. These findings highlight a distinct molecular mechanism for regulating rRNA transcription in mycobacteria that is critical for M. tuberculosis pathogenesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/fisiología , ARN Ribosómico/genética , Tuberculosis/microbiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Daño del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ratones , Viabilidad Microbiana , Datos de Secuencia Molecular , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Estrés Oxidativo , Regiones Promotoras Genéticas , ARN Ribosómico/metabolismo , Alineación de Secuencia , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
8.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34187896

RESUMEN

Chemical modifications of RNA 5'-ends enable "epitranscriptomic" regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5'-end. In Escherichia coli cells, RNAs with a 5'-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, "primer-dependent initiation." Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5'-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS-2NTSS-1NTSSWTSS+1, where TSS is the transcription start site, NTSS-1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS-2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS-2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded Ecoli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.


Asunto(s)
Cartilla de ADN/metabolismo , Escherichia coli/genética , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Secuencia de Bases , Sitios de Unión , Cromosomas Bacterianos/genética , Regulación Bacteriana de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sitio de Iniciación de la Transcripción
9.
Mol Cell ; 60(6): 953-65, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26626484

RESUMEN

We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼ 16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").


Asunto(s)
Escherichia coli/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sitio de Iniciación de la Transcripción , Código de Barras del ADN Taxonómico , ADN Bacteriano/análisis , Regiones Promotoras Genéticas , ARN Bacteriano/análisis , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Transcripción Genética
10.
Nature ; 535(7612): 444-7, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27383794

RESUMEN

The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency, and has been proposed to provide a layer of 'epitranscriptomic' gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate 'cap' in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD+) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD+, reduced NAD+ (NADH) and dpCoA caps are added to RNA after transcription initiation, in a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD+, NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated 'ab initio capping' may occur in all organisms.


Asunto(s)
Coenzima A/metabolismo , NAD/metabolismo , Caperuzas de ARN/metabolismo , Iniciación de la Transcripción Genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/metabolismo , Datos de Secuencia Molecular , Nucleótidos/química , Nucleótidos/metabolismo , Regiones Promotoras Genéticas/genética , Caperuzas de ARN/química , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sitio de Iniciación de la Transcripción
11.
J Bacteriol ; 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32482726

RESUMEN

The PhoQ/PhoP two-component system plays a vital role in the regulation of Mg2+ homeostasis, resistance to acid and hyperosmotic stress, cationic antimicrobial peptides, and virulence in Escherichia coli, Salmonella and related bacteria. Previous studies have shown that MgrB, a 47 amino acid membrane protein that is part of the PhoQ/PhoP regulon, inhibits the histidine kinase PhoQ. MgrB is part of a negative feedback loop modulating this two-component system that prevents hyperactivation of PhoQ and may also provide an entry point for additional input signals for the PhoQ/PhoP pathway. To explore the mechanism of action of MgrB, we have analyzed the effects of point mutations, C-terminal truncations and transmembrane region swaps on MgrB activity. In contrast with two other known membrane protein regulators of histidine kinases in E. coli, we find that the MgrB TM region is necessary for PhoQ inhibition. Our results indicate that the TM region mediates interactions with PhoQ and that W20 is a key residue for PhoQ/MgrB complex formation. Additionally, mutations of the MgrB cytosolic region suggest that the two N-terminal lysines play an important role in regulating PhoQ activity. Alanine scanning mutagenesis of the periplasmic region of MgrB further indicates that, with the exception of a few highly conserved residues, most residues are not essential for MgrB's function as a PhoQ inhibitor. Our results indicate that the regulatory function of the small protein MgrB depends on distinct contributions from multiple residues spread across the protein. Interestingly, the TM region also appears to interact with other non-cognate histidine kinases in a bacterial two-hybrid assay, suggesting a potential route for evolving new small protein modulators of histidine kinases.

12.
RNA ; 24(10): 1418-1425, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30045887

RESUMEN

RNA 5' cap structures comprising the metabolic effector nicotinamide adenine dinucleotide (NAD) have been identified in diverse organisms. Here we report a simple, two-step procedure to detect and quantitate NAD-capped RNA, termed "NAD-capQ." By use of NAD-capQ we quantitate NAD-capped RNA levels in Escherichia coli, Saccharomyces cerevisiae, and human cells, and we measure increases in NAD-capped RNA levels in cells from all three organisms harboring disruptions in their respective "deNADding" enzymes. We further show that NAD-capped RNA levels in human cells respond to changes in cellular NAD concentrations, indicating that NAD capping provides a mechanism for human cells to directly sense and respond to alterations in NAD metabolism. Our findings establish NAD-capQ as a versatile, rapid, and accessible methodology to detect and quantitate 5'-NAD caps on endogenous RNA in any organism.


Asunto(s)
Colorimetría , NAD/química , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN/química , ARN/genética , Alelos , Línea Celular , Colorimetría/métodos , Humanos , Espacio Intracelular , Espectrometría de Masas , Mutación , NAD/metabolismo , ARN Mensajero/química , ARN Mensajero/genética
14.
Genes Dev ; 26(13): 1498-507, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22751503

RESUMEN

Prokaryotic and eukaryotic RNA polymerases can use 2- to ∼4-nt RNAs, "nanoRNAs," to prime transcription initiation in vitro. It has been proposed that nanoRNA-mediated priming of transcription can likewise occur under physiological conditions in vivo and influence transcription start site selection and gene expression. However, no direct evidence of such regulation has been presented. Here we demonstrate in Escherichia coli that nanoRNAs prime transcription in a growth phase-dependent manner, resulting in alterations in transcription start site selection and changes in gene expression. We further define a sequence element that determines, in part, whether a promoter will be targeted by nanoRNA-mediated priming. By establishing that a significant fraction of transcription initiation is primed in living cells, our findings contradict the conventional model that all cellular transcription is initiated using nucleoside triphosphates (NTPs) only. In addition, our findings identify nanoRNAs as a previously undocumented class of regulatory small RNAs that function by being directly incorporated into a target transcript.


Asunto(s)
Regulación de la Expresión Génica , ARN/genética , Sitio de Iniciación de la Transcripción , ARN/biosíntesis , Ribonucleasas/metabolismo
15.
Mol Cell ; 42(6): 817-25, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21700226

RESUMEN

It is often presumed that, in vivo, the initiation of RNA synthesis by DNA-dependent RNA polymerases occurs using NTPs alone. Here, using the model Gram-negative bacterium Pseudomonas aeruginosa, we demonstrate that depletion of the small-RNA-specific exonuclease, Oligoribonuclease, causes the accumulation of oligoribonucleotides 2 to ∼4 nt in length, "nanoRNAs," which serve as primers for transcription initiation at a significant fraction of promoters. Widespread use of nanoRNAs to prime transcription initiation is coupled with global alterations in gene expression. Our results, obtained under conditions in which the concentration of nanoRNAs is artificially elevated, establish that small RNAs can be used to initiate transcription in vivo, challenging the idea that all cellular transcription occurs using only NTPs. Our findings further suggest that nanoRNAs could represent a distinct class of functional small RNAs that can affect gene expression through direct incorporation into a target RNA transcript rather than through a traditional antisense-based mechanism.


Asunto(s)
Nanoestructuras/química , Pseudomonas aeruginosa/genética , ARN/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , ARN/química , ARN/genética , Sitio de Iniciación de la Transcripción
16.
Proc Natl Acad Sci U S A ; 113(21): E2899-905, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162333

RESUMEN

During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein-DNA interactions with the downstream part of the nontemplate strand of the transcription bubble ("core recognition element," CRE). Here, we investigated whether sequence-specific RNAP-CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP-CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP-CRE interactions on TSS selection in vitro and in vivo for a library of 4(7) (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP-CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5' merodiploid native-elongating-transcript sequencing, 5' mNET-seq, we assessed effects of RNAP-CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP-CRE interactions determine TSS selection. Our findings establish RNAP-CRE interactions are a functional determinant of TSS selection. We propose that RNAP-CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).


Asunto(s)
ADN Bacteriano , ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , Regiones Promotoras Genéticas/fisiología , Iniciación de la Transcripción Genética/fisiología , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
17.
Genes Dev ; 25(1): 77-88, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21205867

RESUMEN

The bacterial RNA polymerase (RNAP) holoenzyme consists of a catalytic core enzyme (α(2)ßß'ω) in complex with a σ factor that is essential for promoter recognition and transcription initiation. During early elongation, the stability of interactions between σ and the remainder of the transcription complex decreases. Nevertheless, there is no mechanistic requirement for release of σ upon the transition to elongation. Furthermore, σ can remain associated with RNAP during transcription elongation and influence regulatory events that occur during transcription elongation. Here we demonstrate that promoter-like DNA sequence elements within the initial transcribed region that are known to induce early elongation pausing through sequence-specific interactions with σ also function to increase the σ content of downstream elongation complexes. Our findings establish σ-dependent pausing as a mechanism by which initial transcribed region sequences can influence the composition and functional properties of the transcription elongation complex over distances of at least 700 base pairs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Factor sigma/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/química , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Alineación de Secuencia , Factor sigma/química
18.
J Bacteriol ; 200(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30061357

RESUMEN

The obligate intracellular bacterial pathogen Chlamydia trachomatis has a unique developmental cycle consisting of two contrasting cellular forms. Whereas the primary Chlamydia sigma factor, σ66, is involved in the expression of the majority of chlamydial genes throughout the developmental cycle, expression of several late genes requires the alternative sigma factor, σ28 In prior work, we identified GrgA as a Chlamydia-specific transcription factor that activates σ66-dependent transcription by binding DNA and interacting with a nonconserved region (NCR) of σ66 Here, we extend these findings by showing GrgA can also activate σ28-dependent transcription through direct interaction with σ28 We measure the binding affinity of GrgA for both σ66 and σ28, and we identify regions of GrgA important for σ28-dependent transcription. Similar to results obtained with σ66, we find that GrgA's interaction with σ28 involves an NCR located upstream of conserved region 2 of σ28 Our findings suggest that GrgA is an important regulator of both σ66- and σ28-dependent transcription in C. trachomatis and further highlight NCRs of bacterial RNA polymerase as targets for regulatory factors unique to particular organisms.IMPORTANCEChlamydia trachomatis is the number one sexually transmitted bacterial pathogen worldwide. A substantial proportion of C. trachomatis-infected women develop infertility, pelvic inflammatory syndrome, and other serious complications. C. trachomatis is also a leading infectious cause of blindness in underdeveloped countries. The pathogen has a unique developmental cycle that is transcriptionally regulated. The discovery of an expanded role for the Chlamydia-specific transcription factor GrgA helps us understand the progression of the chlamydial developmental cycle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Regulación Bacteriana de la Expresión Génica , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Chlamydia trachomatis/metabolismo , Citoplasma/metabolismo , ARN Polimerasas Dirigidas por ADN , Escherichia coli/genética , Genes Bacterianos , Humanos , Factor sigma/genética , Factores de Transcripción/genética
19.
Nucleic Acids Res ; 44(3): 1256-70, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26740583

RESUMEN

Toxin-antitoxin (TA) systems play key roles in bacterial persistence, biofilm formation and stress responses. The MazF toxin from the Escherichia coli mazEF TA system is a sequence- and single-strand-specific endoribonuclease, and many studies have led to the proposal that MazF family members exclusively target mRNA. However, recent data indicate some MazF toxins can cleave specific sites within rRNA in concert with mRNA. In this report, we identified the repertoire of RNAs cleaved by Mycobacterium tuberculosis toxin MazF-mt9 using an RNA-seq-based approach. This analysis revealed that two tRNAs were the principal targets of MazF-mt9, and each was cleaved at a single site in either the tRNA(Pro14) D-loop or within the tRNA(Lys43) anticodon. This highly selective target discrimination occurs through recognition of not only sequence but also structural determinants. Thus, MazF-mt9 represents the only MazF family member known to target tRNA and to require RNA structure for recognition and cleavage. Interestingly, the tRNase activity of MazF-mt9 mirrors basic features of eukaryotic tRNases that also generate stable tRNA-derived fragments that can inhibit translation in response to stress. Our data also suggest a role for tRNA distinct from its canonical adapter function in translation, as cleavage of tRNAs by MazF-mt9 downregulates bacterial growth.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Mycobacterium tuberculosis/metabolismo , ARN de Transferencia/metabolismo , Anticodón/genética , Anticodón/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión/genética , Northern Blotting , Endorribonucleasas/genética , Modelos Moleculares , Mycobacterium tuberculosis/genética , Conformación de Ácido Nucleico , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética
20.
PLoS Genet ; 11(7): e1005348, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26131907

RESUMEN

Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, "primer-dependent initiation," (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5' ends (5' RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T-1A+1 or G-1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Escherichia coli/genética , Regiones Promotoras Genéticas/genética , Iniciación de la Transcripción Genética/fisiología , Vibrio cholerae/genética , Regiones no Traducidas 5'/genética , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia de Bases , Proteínas de Escherichia coli/genética , Gammaproteobacteria/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA