Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Soc Nephrol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986682

RESUMEN

BACKGROUND: Sodium and fluid retention in liver disease are classically thought to result from reduced effective circulating volume and stimulation of the renin-angiotensin-aldosterone system (RAAS). However, evidence of fluid retention in patients without RAAS activation suggests the involvement of additional mechanisms. In vitro, bile acids activate the epithelial Na+ channel (ENaC) found in the aldosterone-sensitive distal nephron. If this occurs in vivo, ENaC may become activated in liver disease even with antagonism of aldosterone signaling. METHODS: To test this, we performed bile duct ligation to induce liver disease and increase circulating bile acids in mice given spironolactone to antagonize aldosterone signaling. We analyzed effects on blood, urine and body composition. We also determined the effects of taurocholic acid, a primary conjugated bile acid elevated in liver disease, on ion fluxes in microperfused rabbit collecting ducts. RESULTS: Bile duct ligation increased benzamil-sensitive natriuresis compared to sham, indicating ENaC activation. These effects were not explained by effects on ENaC expression, cleavage, or localization. Bile duct ligated mice also gained significantly more fluid than sham-operated animals. Blocking ENaC reversed fluid gains in bile duct ligated mice but had no effect in shams. In dissected collecting ducts from rabbits, which express ENaC, taurocholic acid stimulated net Na+ absorption. CONCLUSIONS: Our results provide experimental evidence for a novel aldosterone-independent mechanism for sodium and fluid retention in liver disease.

2.
Cell Mol Life Sci ; 80(8): 209, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458846

RESUMEN

The corticosteroid hormone, aldosterone, markedly enhances K+ secretion throughout the colon, a mechanism critical to its role in maintaining overall K+ balance. Previous studies demonstrated that basolateral NKCC1 was up-regulated by aldosterone in the distal colon specifically to support K+ secretion-which is distinct from the more well-established role of NKCC1 in supporting luminal Cl- secretion. However, considerable segmental variability exists between proximal and distal colonic ion transport processes, especially concerning their regulation by aldosterone. Furthermore, delineating such region-specific effects has important implications for the management of various gastrointestinal pathologies. Experiments were therefore designed to determine whether aldosterone similarly up-regulates NKCC1 in the proximal colon to support K+ secretion. Using dietary Na+ depletion as a model of secondary hyperaldosteronism in rats, we found that proximal colon NKCC1 expression was indeed enhanced in Na+-depleted (i.e., hyperaldosteronemic) rats. Surprisingly, electrogenic K+ secretion was not detectable by short-circuit current (ISC) measurements in response to either basolateral bumetanide (NKCC1 inhibitor) or luminal Ba2+ (non-selective K+ channel blocker), despite enhanced K+ secretion in Na+-depleted rats, as measured by 86Rb+ fluxes. Expression of BK and IK channels was also found to be unaltered by dietary Na+ depletion. However, bumetanide-sensitive basal and agonist-stimulated Cl- secretion (ISC) were significantly enhanced by Na+ depletion, as was CFTR Cl- channel expression. These data suggest that NKCC1-dependent secretory pathways are differentially regulated by aldosterone in proximal and distal colon. Development of therapeutic strategies in treating pathologies related to aberrant colonic K+/Cl- transport-such as pseudo-obstruction or ulcerative colitis-may benefit from these findings.


Asunto(s)
Aldosterona , Bumetanida , Animales , Ratas , Aldosterona/farmacología , Aldosterona/metabolismo , Bumetanida/farmacología , Bumetanida/metabolismo , Cloruros/metabolismo , Colon , Potasio/metabolismo , Sodio/metabolismo
3.
Am J Physiol Cell Physiol ; 322(1): C111-C121, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852210

RESUMEN

The mammalian paraoxonases (PONs) have been linked to protection against oxidative stress. However, the physiological roles of members in this family (PON1, PON2, and PON3) are still being characterized. PON2 and PON3 are expressed in the aldosterone-sensitive distal nephron of the kidney and have been shown to negatively regulate expression of the epithelial sodium channel (ENaC), a trimeric ion channel that orchestrates salt and water homeostasis. To date, the nature of this phenomenon has not been explored. Therefore, to investigate the mechanism by which PON2 regulates ENaC, we expressed PON2 along with the ENaC subunits in fisher rat thyroid (FRT) cells, a system that is amenable to biochemical analyses of ENaC assembly and trafficking. We found that PON2 primarily resides in the endoplasmic reticulum (ER) in FRT cells, and its expression reduces the abundance of each ENaC subunit, reflecting enhanced subunit turnover. In contrast, no effect on the levels of mRNAs encoding the ENaC subunits was evident. Inhibition of lysosome function with chloroquine or NH4Cl did not alter the inhibitory effect of PON2 on ENaC expression. In contrast, PON2 accelerates ENaC degradation in a proteasome-dependent manner and acts before ENaC subunit ubiquitination. As a result of enhanced ENaC subunit ubiquitination and degradation, both channel surface expression and ENaC-mediated Na+ transport in FRT cells were reduced by PON2. Together, our data suggest that PON2 functions as an ER chaperone to monitor ENaC biogenesis and redirects the channel for ER-associated degradation.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Retículo Endoplásmico/metabolismo , Canales Epiteliales de Sodio/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Arildialquilfosfatasa/análisis , Retículo Endoplásmico/química , Canales Epiteliales de Sodio/análisis , Ratones , Chaperonas Moleculares/análisis
4.
J Physiol ; 600(21): 4695-4711, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36071685

RESUMEN

Bile acids, originally known to emulsify dietary lipids, are now established signalling molecules that regulate physiological processes. Signalling targets several proteins that include the ion channels involved in regulating intestinal motility and bile viscosity. Studies show that bile acids regulate the epithelial sodium channel (ENaC) in cultured cell models and heterologous expression systems. ENaC plays both local and systemic roles in regulating extracellular fluids. Here we investigated whether bile acids regulate ENaC expressed in native tissues. We found that taurocholic acid and taurohyodeoxycholic acid regulated ENaC in both the distal nephron and distal colon. We also tested the hypothesis that regulation occurs through direct binding. Using photoaffinity labelling, we found evidence for specific binding to both the ß and γ subunits of the channel. In functional experiments, we found that the α subunit was sufficient for regulation. We also found that regulation by at least one bile acid was voltage-sensitive, suggesting that one binding site may be closely associated with the pore-forming helices of the channel. Our data provide evidence that bile acids regulate ENaC by binding to multiple sites to influence the open probability of the channel. KEY POINTS: Recent studies have shown that bile acids regulate the epithelial sodium channel (ENaC) in vitro. Here we investigated whether bile acids regulate ENaC in native tissues and whether bile acids directly bind the channel. We found that bile acids regulate ENaC expressed in the mouse cortical collecting duct and mouse colon by modulating open probability. Photoaffinity labelling experiments showed specific binding to the ß and γ subunits of the channel, while channels comprising only α subunits were sensitive to taurocholic acid in functional experiments using Xenopus oocytes. Taurocholic acid regulation of ENaC was voltage-dependent, providing evidence for binding to pore-forming helices. Our data indicate that bile acids are ENaC regulatory effectors that may have a role in the physiology and pathophysiology of several systems.


Asunto(s)
Ácidos y Sales Biliares , Canales Epiteliales de Sodio , Animales , Ratones , Amilorida , Ácidos y Sales Biliares/farmacología , Ácidos y Sales Biliares/metabolismo , Canales Epiteliales de Sodio/metabolismo , Iones/metabolismo , Oocitos/fisiología , Sodio/metabolismo , Ácido Taurocólico/metabolismo , Xenopus laevis/metabolismo , Canales de Sodio/metabolismo
5.
FASEB J ; 35(5): e21606, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33908679

RESUMEN

Na+ -K+ -2Cl- cotransporter-1 (NKCC1) facilitates basolateral K+ and Cl- uptake, supporting their efflux across mucosal membranes of colonic epithelial cells. NKCC1 activity has also been shown to be critical for electrogenic K+ secretion induced by aldosterone, which is known to stimulate large-conductance K+ (BK) channel expression in mucosal membranes. This study was aimed to (1) identify whether aldosterone enhances NKCC1 expression specifically to support BK-mediated K+ secretion and (2) to determine whether increased NKCC1 supports electrogenic Cl- secretion in parallel to K+ secretion. Dietary Na+ depletion was used to induce secondary hyperaldosteronism in rats, or aldosterone was administered ex vivo to rat distal colonic mucosae. NKCC1-dependent electrogenic K+ or Cl- secretion was measured as a function of short circuit current (ISC ). qRT-PCR, western blot, and immunofluorescence analyses were performed using standard techniques. Aldosterone enhanced NKCC1 and BKα expression and electrogenic K+ secretion in the distal colon, which was inhibited by either serosal bumetanide (NKCC1 inhibitor) or mucosal iberiotoxin (IbTX; BK channel blocker), but not TRAM-34 (IK channel blocker). Expression of NKCC1 and BKα proteins was enhanced in crypt cells of hyper-aldosterone rats. However, neither NKCC1-dependent Cl- secretion nor CFTR (apical Cl- channel) expression was enhanced by aldosterone. We conclude that aldosterone enhances NKCC1 to support BK-mediated K+ secretion independently of Cl- secretion in the distal colon. The regulation of NKCC1 expression/K+ secretion by aldosterone may be a therapeutic target in treating gastrointestinal disorders associated with alterations in colonic K+ transport, such as colonic pseudo-obstruction, and hyperkalemia associated with renal disease.


Asunto(s)
Aldosterona/farmacología , Colon/metabolismo , Hiperaldosteronismo/patología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Colon/efectos de los fármacos , Femenino , Hiperaldosteronismo/metabolismo , Transporte Iónico , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Ratas , Ratas Sprague-Dawley , Miembro 2 de la Familia de Transportadores de Soluto 12/genética
6.
Am J Physiol Cell Physiol ; 320(6): C1074-C1087, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852365

RESUMEN

Voltage-gated Kv7 (KCNQ family) K+ channels are expressed in many neuronal populations and play an important role in regulating membrane potential by generating a hyperpolarizing K+ current and decreasing cell excitability. However, the role of KV7 channels in the neural regulation of intestinal epithelial Cl- secretion is not known. Cl- secretion in mouse distal colon was measured as a function of short-circuit current (ISC), and pharmacological approaches were used to test the hypothesis that activation of KV7 channels in enteric neurons would inhibit epithelial Cl- secretion. Flupirtine, a nonselective KV7 activator, inhibited basal Cl- secretion in mouse distal colon and abolished or attenuated the effects of drugs that target various components of enteric neurotransmission, including tetrodotoxin (NaV channel blocker), veratridine (NaV channel activator), nicotine (nicotinic acetylcholine receptor agonist), and hexamethonium (nicotinic antagonist). In contrast, flupritine did not block the response to epithelium-targeted agents VIP (endogenous VPAC receptor ligand) or carbachol (nonselective cholinergic agonist). Flupirtine inhibited Cl- secretion in both full-thickness and seromuscular-stripped distal colon (containing the submucosal, but not myenteric plexus) but generated no response in epithelial T84 cell monolayers. KV7.2 and KV7.3 channel proteins were detected by immunofluorescence in whole mount preparations of the submucosa from mouse distal colon. ICA 110381 (KV7.2/7.3 specific activator) inhibited Cl- secretion comparably to flupirtine. We conclude that KV7 channel activators inhibit neurally driven Cl- secretion in the colonic epithelium and may therefore have therapeutic benefit in treating pathologies associated with hyperexcitable enteric nervous system, such as irritable bowel syndrome with diarrhea (IBS-D).


Asunto(s)
Cloruros/metabolismo , Colon/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Células Epiteliales/metabolismo , Canales de Potasio KCNQ/metabolismo , Neuronas/metabolismo , Aminopiridinas/farmacología , Animales , Carbacol/farmacología , Línea Celular Tumoral , Agonistas Colinérgicos/farmacología , Colon/efectos de los fármacos , Sistema Nervioso Entérico/metabolismo , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
7.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G185-G199, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34132108

RESUMEN

Recent studies in our lab have shown that the KV7 channel activator, flupirtine, inhibits colonic epithelial Cl- secretion through effects on submucosal neurons of the enteric nervous system (ENS). We hypothesized that flupirtine would also stimulate Na+ absorption as a result of reduced secretory ENS input to the epithelium. To test this hypothesis, unidirectional 22Na+ fluxes were measured under voltage-clamped conditions. Pharmacological approaches using an Ussing-style recording chamber combined with immunofluorescence microscopy techniques were used to determine the effect of flupirtine on active Na+ transport in the rat colon. Flupirtine stimulated electroneutral Na+ absorption in partially seromuscular-stripped colonic tissues, while simultaneously inhibiting short-circuit current (ISC; i.e., Cl- secretion). Both of these effects were attenuated by pretreatment with the ENS inhibitor, tetrodotoxin. The Na+/H+ exchanger isoform 3 (NHE-3)-selective inhibitor, S3226, significantly inhibited flupirtine-stimulated Na+ absorption, whereas the NHE-2-selective inhibitor HOE-694 did not. NHE-3 localization near the apical membranes of surface epithelial cells was also more apparent in flupirtine-treated colon versus control. Flupirtine did not alter epithelial Na+ channel (ENaC)-mediated Na+ absorption in distal colonic tissues obtained from hyperaldosteronaemic rats and had no effect in the normal ileum but did stimulate Na+ absorption in the proximal colon. Finally, the parallel effects of flupirtine on ISC (Cl- secretion) and Na+ absorption were significantly correlated with each other. Together, these data indicate that flupirtine stimulates NHE-3-dependent Na+ absorption, likely as a result of reduced stimulatory input to the colonic epithelium by submucosal ENS neurons.NEW & NOTEWORTHY We present a novel mechanism regarding regulation of epithelial ion transport by enteric neurons. Activation of neuronal KV7 K+ channels markedly stimulates Na+ absorption and inhibits Cl- secretion across the colonic epithelium. This may be useful in developing new treatments for diarrheal disorders, such as irritable bowel syndrome with diarrhea (IBS-D).


Asunto(s)
Aminopiridinas/farmacología , Colon/metabolismo , Sistema Nervioso Entérico/metabolismo , Absorción Intestinal , Sodio/metabolismo , Animales , Colon/efectos de los fármacos , Canales Epiteliales de Sodio/metabolismo , Guanidinas/farmacología , Masculino , Moduladores del Transporte de Membrana/farmacología , Metacrilatos/farmacología , Ratas , Ratas Sprague-Dawley , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sulfonas/farmacología
8.
Am J Physiol Cell Physiol ; 318(2): C263-C271, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721611

RESUMEN

Iron deficiency anemia is a common complication of ulcerative colitis (UC) that can profoundly impact quality of life. Most iron absorption occurs in the duodenum via divalent metal transporter 1 (DMT1)-mediated uptake and ferroportin-1 (FPN1)-mediated export across the apical and basolateral membranes, respectively. However, the colon also contains iron transporters and can participate in iron absorption. Studies have shown increased duodenal DMT1 and FPN1 in patients with UC, but there is conflicting evidence about whether expression is altered in UC colon. We hypothesized that expression of colonic DMT1 and FPN1 will also increase to compensate for iron deficiency. Quantitative RT-PCR and Western blot analyses were performed on duodenal and colonic segmental (right colon, transverse colon, left colon, and rectum) biopsies obtained during colonoscopy. DMT1 mRNA and protein abundances in colonic segments were approximately equal to those in the duodenum, whereas colonic FPN1 mRNA and protein abundances of colonic segments were about one-quarter of those of the duodenum. DMT1 specific mRNA and protein abundances were increased twofold, whereas FPN1 mRNA and protein expressions were increased fivefold in UC distal colon. Immunofluorescence studies revealed enhanced expression of apical membrane- and basolateral membrane-localized DMT1 and FPN1 in UC human colon, respectively. Increased DMT1 expression was associated with enhanced 2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea (CISMBI, DMT1 specific inhibitor)-sensitive 59Fe uptake in UC human colon. We conclude from these results that patients with active UC have increased expression of colonic iron transporters and increased iron absorption, which may be targeted in the treatment of UC-related anemia.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Absorción Intestinal/fisiología , Hierro/metabolismo , Factores de Transcripción/metabolismo , Animales , Duodeno/metabolismo , Humanos , Transporte Iónico/fisiología , Calidad de Vida , ARN Mensajero/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G142-G150, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32567323

RESUMEN

Transepithelial K+ absorption requires apical K+ uptake and basolateral K+ exit. In the colon, apical H+-K+-ATPase mediates cellular K+ uptake, and it has been suggested that electroneutral basolateral K+ exit reflects K+-Cl- cotransporter-1 (KCC1) operating in parallel with K+ and Cl- channels. The present study was designed to identify basolateral transporter(s) responsible for K+ exit in rat distal colon. Active K+ absorption was determined by measuring 86Rb+ (K+ surrogate) fluxes across colonic epithelia under voltage-clamp conditions. With zero Cl- in the mucosal solution, net K+ absorption was reduced by 38%, indicating that K+ absorption was partially Cl--dependent. Serosal addition of DIOA (KCC1 inhibitor) or Ba2+ (nonspecific K+ channel blocker) inhibited net K+ absorption by 21% or 61%, respectively, suggesting that both KCC1 and K+ channels contribute to basolateral K+ exit. Clotrimazole and TRAM34 (IK channel blockers) added serosally inhibited net K+ absorption, pointing to the involvement of IK channels in basolateral K+ exit. GaTx2 (CLC2 blocker) added serosally also inhibited net K+ absorption, suggesting that CLC2-mediated Cl- exit accompanies IK channel-mediated K+ exit across the basolateral membrane. Net K+ absorption was not inhibited by serosal addition of either IbTX (BK channel blocker), apamin (SK channel blocker), chromanol 293B (KV7 channel blocker), or CFTRinh172 (CFTR blocker). Immunofluorescence studies confirmed basolateral membrane colocalization of CLC2-like proteins and Na+-K+-ATPase α-subunits. We conclude that active K+ absorption in rat distal colon involves electroneutral basolateral K+ exit, which may reflect IK and CLC2 channels operating in parallel.NEW & NOTEWORTHY This study demonstrates that during active electroneutral K+ absorption in rat distal colon, K+ exit across the basolateral membrane mainly reflects intermediate conductance K+ channels operating in conjunction with chloride channel 2, with a smaller, but significant, contribution from K+-Cl- cotransporter-1 (KCC1) activity.


Asunto(s)
Canales de Cloruro/metabolismo , Colon/fisiología , Mucosa Intestinal/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Animales , Canales de Cloruro CLC-2 , Canales de Cloruro/genética , Cloruros/metabolismo , Femenino , Transporte Iónico , Masculino , Técnicas de Placa-Clamp , Canales de Potasio/genética , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
10.
Am J Physiol Cell Physiol ; 315(1): C10-C20, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29561662

RESUMEN

Attenuated Ca2+-activated Cl- secretion has previously been observed in the model of dextran sulfate sodium (DSS)-induced colitis. Prior studies have implicated dysfunctional muscarinic signaling from basolateral membranes as the potential perpetrator leading to decreased Ca2+-activated Cl- secretion. However, in our chronic model of DSS-colitis, cholinergic receptor muscarinic 3 ( Chrm3) transcript (1.028 ± 0.12 vs. 1.029 ± 0.27, P > 0.05) and CHRM3 protein expression (1.021 ± 0.24 vs. 0.928 ± 0.09, P > 0.05) were unchanged. Therefore, we hypothesized that decreased carbachol (CCH)-stimulated Cl- secretion in DSS-induced colitis could be attributed to a loss of Ca2+-activated Cl- channels (CaCC) in apical membranes of colonic epithelium. To establish this chemically-induced colitis, Balb/C mice were exposed to 4% DSS for five alternating weeks to stimulate a more moderate, chronic colitis. Upon completion of the protocol, whole thickness sections of colon were mounted in an Ussing chamber under voltage-clamp conditions. DSS-induced colitis demonstrated a complete inhibition of basolateral administration of CCH-stimulated Cl- secretion that actually displayed a reversal in polarity (15.40 ± 2.22 µA/cm2 vs. -2.47 ± 0.25 µA/cm2). Western blotting of potential CaCCs, quantified by densitometric analysis, demonstrated no change in bestrophin-2 and cystic fibrosis transmembrane regulator, whereas anoctamin-1 [ANO1, transmembrane protein 16A (TMEM16A)] was significantly downregulated (1.001 ± 0.13 vs. 0.510 ± 0.12, P < 0.05). Our findings indicate that decreased expression of TMEM16A in DSS-induced colitis contributes to the decreased Ca2+-activated Cl- secretion in murine colon.


Asunto(s)
Anoctamina-1/metabolismo , Calcio/metabolismo , Cloruros/metabolismo , Colitis/metabolismo , Colon/metabolismo , Regulación hacia Abajo/fisiología , Animales , Bestrofinas/metabolismo , Carbacol/farmacología , Canales de Cloruro/metabolismo , Colitis/inducido químicamente , Colon/efectos de los fármacos , Fibrosis Quística/metabolismo , Sulfato de Dextran/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Receptor Muscarínico M3/metabolismo
11.
Int J Mol Sci ; 19(5)2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748496

RESUMEN

Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca2+-activated Cl− secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca2+-activated Cl− channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca2+-sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.


Asunto(s)
Anoctamina-1/genética , Señalización del Calcio/genética , Canales de Cloruro/genética , Proteínas de Neoplasias/genética , Anoctamina-1/química , Calcio/química , Agonistas de los Canales de Calcio/química , Canales de Cloruro/química , Cloruros/química , Epitelio/química , Epitelio/metabolismo , Humanos , Proteínas de Neoplasias/química
12.
JCI Insight ; 8(21)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37707951

RESUMEN

Epithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology. ENaCs in dissected kidney tubules from γC33A,C41A mice had reduced open probability compared with wild-type (WT) littermates maintained on either standard or Na+-deficient diets. Male mutant mice also had higher aldosterone levels than WT littermates following Na+ restriction. However, γC33A,C41A mice did not have reduced amiloride-sensitive Na+ currents in the distal colon or benzamil-induced natriuresis compared to WT mice. We identified a second, larger conductance cation channel in the distal nephron with biophysical properties distinct from ENaC. The activity of this channel was higher in Na+-restricted γC33A,C41A versus WT mice and was blocked by benzamil, providing a possible compensatory mechanism for reduced prototypic ENaC function. We conclude that γ subunit palmitoylation sites are required for prototypic ENaC activity in vivo but are not necessary for amiloride/benzamil-sensitive Na+ transport in the distal nephron or colon.


Asunto(s)
Amilorida , Lipoilación , Ratones , Masculino , Animales , Amilorida/farmacología , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA