Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35671510

RESUMEN

Computational models are often employed in systems biology to study the dynamic behaviours of complex systems. With the rise in the number of computational models, finding ways to improve the reusability of these models and their ability to reproduce virtual experiments becomes critical. Correct and effective model annotation in community-supported and standardised formats is necessary for this improvement. Here, we present recent efforts toward a common framework for annotated, accessible, reproducible and interoperable computational models in biology, and discuss key challenges of the field.


Asunto(s)
Biología Computacional , Biología de Sistemas , Simulación por Computador , Reproducibilidad de los Resultados
2.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524558

RESUMEN

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Asunto(s)
Simulación por Computador , Programas Informáticos , Humanos , Bioingeniería , Modelos Biológicos , Sistema de Registros , Investigadores
3.
Bioinformatics ; 37(24): 4898-4900, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34132740

RESUMEN

SUMMARY: As the number and complexity of biosimulation models grows, so do demands for tools that can help users better understand models and make those models more findable, shareable and reproducible. Consistent model annotation is a step toward these goals. Both models and tools are written in a variety of different languages; thus, the community has recognized the need for standard, language-independent methods for annotation. Based on the Computational Modeling in Biology Network community consensus, we introduce an open-source, cross-platform software library for semantic annotation of models. AVAILABILITY AND IMPLEMENTATION: libOmexMeta is freely available at https://github.com/sys-bio/libOmexMeta under the Apache License 2.0. A live demonstration is at github.com/sys-bio/pyomexmeta-binder-notebook. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Semántica , Programas Informáticos , Simulación por Computador , Lenguaje , Consenso
4.
PLoS Comput Biol ; 17(5): e1008859, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33983945

RESUMEN

Simulating complex biological and physiological systems and predicting their behaviours under different conditions remains challenging. Breaking systems into smaller and more manageable modules can address this challenge, assisting both model development and simulation. Nevertheless, existing computational models in biology and physiology are often not modular and therefore difficult to assemble into larger models. Even when this is possible, the resulting model may not be useful due to inconsistencies either with the laws of physics or the physiological behaviour of the system. Here, we propose a general methodology for composing models, combining the energy-based bond graph approach with semantics-based annotations. This approach improves model composition and ensures that a composite model is physically plausible. As an example, we demonstrate this approach to automated model composition using a model of human arterial circulation. The major benefit is that modellers can spend more time on understanding the behaviour of complex biological and physiological systems and less time wrangling with model composition.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Arterias/anatomía & histología , Arterias/fisiología , Circulación Sanguínea/fisiología , Biología Computacional , Gráficos por Computador , Humanos , Modelos Cardiovasculares , Semántica , Programas Informáticos
5.
Brief Bioinform ; 20(2): 659-670, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-29688273

RESUMEN

The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share information and develop systems biomedicine tools. The project aims for an integrated, highly curated and user-friendly platform for disease-related knowledge. The primary focus of disease maps is on interconnected signaling, metabolic and gene regulatory network pathways represented in standard formats. The involvement of domain experts ensures that the key disease hallmarks are covered and relevant, up-to-date knowledge is adequately represented. Expert-curated and computer readable, disease maps may serve as a compendium of knowledge, allow for data-supported hypothesis generation or serve as a scaffold for the generation of predictive mathematical models. This article summarizes the 2nd Disease Maps Community meeting, highlighting its important topics and outcomes. We outline milestones on the roadmap for the future development of disease maps, including creating and maintaining standardized disease maps; sharing parts of maps that encode common human disease mechanisms; providing technical solutions for complexity management of maps; and Web tools for in-depth exploration of such maps. A dedicated discussion was focused on mathematical modeling approaches, as one of the main goals of disease map development is the generation of mathematically interpretable representations to predict disease comorbidity or drug response and to suggest drug repositioning, altogether supporting clinical decisions.


Asunto(s)
Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Biología Computacional , Humanos , Modelos Estadísticos , Investigación Biomédica Traslacional
6.
Brief Bioinform ; 20(2): 540-550, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30462164

RESUMEN

Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología Computacional/métodos , Simulación por Computador , Bases de Datos Factuales , Semántica , Humanos , Programas Informáticos
7.
BMC Bioinformatics ; 20(1): 457, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492098

RESUMEN

BACKGROUND: Mathematics and Phy sics-based simulation models have the potential to help interpret and encapsulate biological phenomena in a computable and reproducible form. Similarly, comprehensive descriptions of such models help to ensure that such models are accessible, discoverable, and reusable. To this end, researchers have developed tools and standards to encode mathematical models of biological systems enabling reproducibility and reuse, tools and guidelines to facilitate semantic description of mathematical models, and repositories in which to archive, share, and discover models. Scientists can leverage these resources to investigate specific questions and hypotheses in a more efficient manner. RESULTS: We have comprehensively annotated a cohort of models with biological semantics. These annotated models are freely available in the Physiome Model Repository (PMR). To demonstrate the benefits of this approach, we have developed a web-based tool which enables users to discover models relevant to their work, with a particular focus on epithelial transport. Based on a semantic query, this tool will help users discover relevant models, suggesting similar or alternative models that the user may wish to explore or use. CONCLUSION: The semantic annotation and the web tool we have developed is a new contribution enabling scientists to discover relevant models in the PMR as candidates for reuse in their own scientific endeavours. This approach demonstrates how semantic web technologies and methodologies can contribute to biomedical and clinical research. The source code and links to the web tool are available at https://github.com/dewancse/model-discovery-tool.


Asunto(s)
Modelos Biológicos , Semántica , Humanos , Modelación Específica para el Paciente , Reproducibilidad de los Resultados , Programas Informáticos
8.
Bioinformatics ; 33(8): 1253-1254, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28049131

RESUMEN

Summary: The Simulation Experiment Description Markup Language (SED-ML) is a standardized format for exchanging simulation studies independently of software tools. We present the SED-ML Web Tools, an online application for creating, editing, simulating and validating SED-ML documents. The Web Tools implement all current SED-ML specifications and, thus, support complex modifications and co-simulation of models in SBML and CellML formats. Ultimately, the Web Tools lower the bar on working with SED-ML documents and help users create valid simulation descriptions. Availability and Implementation: http://sysbioapps.dyndns.org/SED-ML_Web_Tools/ . Contact: fbergman@caltech.edu .


Asunto(s)
Simulación por Computador , Programas Informáticos , Internet , Lenguajes de Programación
9.
J Physiol ; 594(23): 6817-6831, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27353233

RESUMEN

KEY POINTS: The complexity of computational models is increasing, supported by research in modelling tools and frameworks. But relatively little thought has gone into design principles for complex models. We propose a set of design principles for complex model construction with the Physiome standard modelling protocol CellML. By following the principles, models are generated that are extensible and are themselves suitable for reuse in larger models of increasing complexity. We illustrate these principles with examples including an architectural prototype linking, for the first time, electrophysiology, thermodynamically compliant metabolism, signal transduction, gene regulation and synthetic biology. The design principles complement other Physiome research projects, facilitating the application of virtual experiment protocols and model analysis techniques to assist the modelling community in creating libraries of composable, characterised and simulatable quantitative descriptions of physiology. ABSTRACT: The ability to produce and customise complex computational models has great potential to have a positive impact on human health. As the field develops towards whole-cell models and linking such models in multi-scale frameworks to encompass tissue, organ, or organism levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling group wishing to reuse existing computational models as modules for their own work faces many challenges in the context of construction, storage, retrieval, documentation and analysis of such modules. Physiome standards, frameworks and tools seek to address several of these challenges, especially for models expressed in the modular protocol CellML. Aside from providing a general ability to produce modules, there has been relatively little research work on architectural principles of CellML models that will enable reuse at larger scales. To complement and support the existing tools and frameworks, we develop a set of principles to address this consideration. The principles are illustrated with examples that couple electrophysiology, signalling, metabolism, gene regulation and synthetic biology, together forming an architectural prototype for whole-cell modelling (including human intervention) in CellML. Such models illustrate how testable units of quantitative biophysical simulation can be constructed. Finally, future relationships between modular models so constructed and Physiome frameworks and tools are discussed, with particular reference to how such frameworks and tools can in turn be extended to complement and gain more benefit from the results of applying the principles.


Asunto(s)
Modelos Biológicos , Fenómenos Fisiológicos , Humanos , Programas Informáticos
11.
Vet Radiol Ultrasound ; 57(5): 502-14, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27198611

RESUMEN

Magnetic resonance imaging (MRI) is the most sensitive imaging modality to detect the early changes of osteoarthritis. Currently, there is no quantifiable method to tract these pathological changes over time in the horse. The objective of this experimental study was to characterize the progression of MRI changes in an equine model of post-traumatic osteoarthritis using a semiquantitative scoring system for whole-organ evaluation of the middle carpal joint. On day 0, an osteochondral fragment was created in one middle carpal joint (OCI) and the contralateral joint (CON) was sham-operated in 10 horses. On day 14, study horses resumed exercise on a high-speed treadmill until the completion of the study (day 98). High-field MRI examinations were performed on days 0 (preosteochondral fragmentation), 14, and 98 and scored by three blinded observers using consensus agreement. Images were scored based on 15 independent articular features, and scores were compared between and within-groups. On days 14 and 98, OCI joints had significantly (P ≤ 0.05) higher whole-organ median scores (29.0 and 31.5, respectively), compared to CON joints (21.5 and 20.0, respectively). On day 14, OCI joints showed significant increases in high-signal bone lesion scores, and osteochondral fragment number and size. On day 98, high-signal bone lesion, low-signal bone lesion, osteophyte formation, cartilage signal abnormality, subchondral bone irregularity, joint effusion, and synovial thickening scores were significantly increased in OCI joints. Study results suggest that the MRI whole-organ scoring system reported here may be used to identify onset and progression of pathological changes following osteochondral injury.


Asunto(s)
Articulaciones del Carpo/diagnóstico por imagen , Enfermedades de los Caballos/diagnóstico por imagen , Imagen por Resonancia Magnética/veterinaria , Osteoartritis/veterinaria , Animales , Carpo Animal/diagnóstico por imagen , Femenino , Enfermedades de los Caballos/etiología , Caballos , Imagen por Resonancia Magnética/métodos , Masculino , Osteoartritis/diagnóstico por imagen , Osteoartritis/etiología
12.
BMC Bioinformatics ; 15: 369, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25494900

RESUMEN

BACKGROUND: With the ever increasing use of computational models in the biosciences, the need to share models and reproduce the results of published studies efficiently and easily is becoming more important. To this end, various standards have been proposed that can be used to describe models, simulations, data or other essential information in a consistent fashion. These constitute various separate components required to reproduce a given published scientific result. RESULTS: We describe the Open Modeling EXchange format (OMEX). Together with the use of other standard formats from the Computational Modeling in Biology Network (COMBINE), OMEX is the basis of the COMBINE Archive, a single file that supports the exchange of all the information necessary for a modeling and simulation experiment in biology. An OMEX file is a ZIP container that includes a manifest file, listing the content of the archive, an optional metadata file adding information about the archive and its content, and the files describing the model. The content of a COMBINE Archive consists of files encoded in COMBINE standards whenever possible, but may include additional files defined by an Internet Media Type. Several tools that support the COMBINE Archive are available, either as independent libraries or embedded in modeling software. CONCLUSIONS: The COMBINE Archive facilitates the reproduction of modeling and simulation experiments in biology by embedding all the relevant information in one file. Having all the information stored and exchanged at once also helps in building activity logs and audit trails. We anticipate that the COMBINE Archive will become a significant help for modellers, as the domain moves to larger, more complex experiments such as multi-scale models of organs, digital organisms, and bioengineering.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Bases de Datos de Ácidos Nucleicos , Programas Informáticos , Archivos , Humanos , Almacenamiento y Recuperación de la Información , Internet
13.
Angew Chem Int Ed Engl ; 53(52): 14538-41, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25365926

RESUMEN

Nitrimines are employed as powerful reagents for metal-free formal C(sp(2) )-C(sp(2) ) cross-coupling reactions. The new chemical process is tolerant of a wide array of nitrimine and heterocyclic coupling partners giving rise to the corresponding di- or trisubstituted alkenes, typically in high yield and with high stereoselectivity. This method is ideal for the metal-free construction of heterocycle-containing drug targets, such as phenprocoumon.

14.
J Integr Bioinform ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613325

RESUMEN

Modern biological research is increasingly informed by computational simulation experiments, which necessitate the development of methods for annotating, archiving, sharing, and reproducing the conducted experiments. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments. SED-ML is a computer-readable format for the information outlined by MIASE, created as a community project and supported by many investigators and software tools. Level 1 Version 5 of SED-ML expands the ability of modelers to define simulations in SED-ML using the Kinetic Simulation Algorithm Onotoloy (KiSAO). While it was possible in Version 4 to define a simulation entirely using KiSAO, Version 5 now allows users to define tasks, model changes, ranges, and outputs using the ontology as well. SED-ML is supported by a growing ecosystem of investigators, model languages, and software tools, including various languages for constraint-based, kinetic, qualitative, rule-based, and spatial models, and many simulation tools, visual editors, model repositories, and validators. Additional information about SED-ML is available at https://sed-ml.org/.

15.
Nurs Res ; 62(1): 25-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23150043

RESUMEN

BACKGROUND: Adolescents can use peer resistance skills to avoid being pressured into risky behavior, such as early sexual behavior. Avatar-based virtual reality technology offers a novel way to help build these skills. OBJECTIVES: The aims of this study were to evaluate the feasibility of an avatar-based virtual reality peer resistance skill building game (DRAMA-RAMA), to explore the impact of game play on peer resistance self-efficacy, and to assess how positively the game was perceived. METHODS: Forty-four low-income early adolescent Hispanic girls were assigned randomly to either the intervention (DRAMA-RAMA) or attention control game (Wii Dancing With the Stars) condition. All participants were offered a five-session curriculum that included peer resistance skill content before playing their respective game for 15 minutes, once a week, for 2 weeks. Participants completed electronic surveys at baseline, after game play, and at 2 months to assess demographics, peer resistance self-efficacy, and sexual behavior. They also completed a paper-pencil game experience questionnaire immediately after game play. Data were analyzed using descriptive statistics, t test, chi-square, and analyses of covariance. RESULTS: Separate analyses of covariance showed a significant game effect at posttest for the peer resistance self-efficacy measure (F = 4.21, p < .05), but not at follow-up (F = 0.01, p = .92). DRAMA-RAMA was rated as positively as the Wii Dancing With the Stars (p > .26). DISCUSSION: This randomized control trial provides preliminary support for the hypothesis that playing an avatar-based virtual reality technology game can strengthen peer resistance skills, and early adolescent Hispanic girls will have a positive response to this game.


Asunto(s)
Conducta del Adolescente/psicología , Hispánicos o Latinos/psicología , Relaciones Interpersonales , Grupo Paritario , Autoeficacia , Juegos de Video/psicología , Adaptación Psicológica , Adolescente , Niño , Estudios de Factibilidad , Femenino , Humanos , Asunción de Riesgos , Desempeño de Papel , Factores Sexuales
16.
F1000Res ; 12: 162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842339

RESUMEN

The Transformer-based approaches to solving natural language processing (NLP) tasks such as BERT and GPT are gaining popularity due to their ability to achieve high performance. These approaches benefit from using enormous data sizes to create pre-trained models and the ability to understand the context of words in a sentence. Their use in the information retrieval domain is thought to increase effectiveness and efficiency. This paper demonstrates a BERT-based method (CASBERT) implementation to build a search tool over data annotated compositely using ontologies. The data was a collection of biosimulation models written using the CellML standard in the Physiome Model Repository (PMR). A biosimulation model structurally consists of basic entities of constants and variables that construct higher-level entities such as components, reactions, and the model. Finding these entities specific to their level is beneficial for various purposes regarding variable reuse, experiment setup, and model audit. Initially, we created embeddings representing compositely-annotated entities for constant and variable search (lowest level entity). Then, these low-level entity embeddings were vertically and efficiently combined to create higher-level entity embeddings to search components, models, images, and simulation setups. Our approach was general, so it can be used to create search tools with other data semantically annotated with ontologies - biosimulation models encoded in the SBML format, for example. Our tool is named Biosimulation Model Search Engine (BMSE).


Asunto(s)
Almacenamiento y Recuperación de la Información , Motor de Búsqueda , Simulación por Computador , Procesamiento de Lenguaje Natural
17.
Front Bioinform ; 3: 1107467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865672

RESUMEN

Maximising FAIRness of biosimulation models requires a comprehensive description of model entities such as reactions, variables, and components. The COmputational Modeling in BIology NEtwork (COMBINE) community encourages the use of Resource Description Framework with composite annotations that semantically involve ontologies to ensure completeness and accuracy. These annotations facilitate scientists to find models or detailed information to inform further reuse, such as model composition, reproduction, and curation. SPARQL has been recommended as a key standard to access semantic annotation with RDF, which helps get entities precisely. However, SPARQL is unsuitable for most repository users who explore biosimulation models freely without adequate knowledge of ontologies, RDF structure, and SPARQL syntax. We propose here a text-based information retrieval approach, CASBERT, that is easy to use and can present candidates of relevant entities from models across a repository's contents. CASBERT adapts Bidirectional Encoder Representations from Transformers (BERT), where each composite annotation about an entity is converted into an entity embedding for subsequent storage in a list of entity embeddings. For entity lookup, a query is transformed to a query embedding and compared to the entity embeddings, and then the entities are displayed in order based on their similarity. The list structure makes it possible to implement CASBERT as an efficient search engine product, with inexpensive addition, modification, and insertion of entity embedding. To demonstrate and test CASBERT, we created a dataset for testing from the Physiome Model Repository and a static export of the BioModels database consisting of query-entities pairs. Measured using Mean Average Precision and Mean Reciprocal Rank, we found that our approach can perform better than the traditional bag-of-words method.

18.
J Integr Bioinform ; 20(1)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989443

RESUMEN

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin.


Asunto(s)
Biología Computacional , Biología Sintética , Lenguajes de Programación , Programas Informáticos
19.
Artículo en Inglés | MEDLINE | ID: mdl-38083471

RESUMEN

Clinical translation of personalised computational physiology workflows and digital twins can revolutionise healthcare by providing a better understanding of an individual's physiological processes and any changes that could lead to serious health consequences. However, the lack of common infrastructure for developing these workflows and digital twins has hampered the realisation of this vision. The Auckland Bioengineering Institute's 12 LABOURS project aims to address these challenges by developing a Digital Twin Platform to enable researchers to develop and personalise computational physiology models to an individual's health data in clinical workflows. This will allow clinical trials to be more efficiently conducted to demonstrate the efficacy of these personalised clinical workflows. We present a demonstration of the platform's capabilities using publicly available data and an existing automated computational physiology workflow developed to assist clinicians with diagnosing and treating breast cancer. We also demonstrate how the platform facilitates the discovery and exploration of data and the presentation of workflow results as part of clinical reports through a web portal. Future developments will involve integrating the platform with health systems and remote-monitoring devices such as wearables and implantables to support home-based healthcare. Integrating outputs from multiple workflows that are applied to the same individual's health data will also enable the generation of their personalised digital twin.Clinical Relevance- The proposed 12 LABOURS Digital Twin Platform will enable researchers to 1) more efficiently conduct clinical trials to assess the efficacy of their computational physiology workflows and support the clinical translation of their research; 2) reuse primary and derived data from these workflows to generate novel workflows; and 3) generate personalised digital twins by integrating the outputs of different computational physiology workflows.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Flujo de Trabajo
20.
Bioinformatics ; 27(5): 743-4, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21216774

RESUMEN

MOTIVATION: The Physiome Model Repository 2 (PMR2) software was created as part of the IUPS Physiome Project (Hunter and Borg, 2003), and today it serves as the foundation for the CellML model repository. Key advantages brought to the end user by PMR2 include: facilities for model exchange, enhanced collaboration and a detailed change history for each model. AVAILABILITY: PMR2 is available under an open source license at http://www.cellml.org/tools/pmr/; a fully functional instance of this software can be accessed at http://models.physiomeproject.org/.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Modelos Biológicos , Programas Informáticos , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA