Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769236

RESUMEN

Traumatic brain injury (TBI) represents one of the most common worldwide causes of death and disability. Clinical and animal model studies have evidenced that TBI is characterized by the loss of both gray and white matter, resulting in brain atrophy and in a decrease in neurological function. Nowadays, no effective treatments to counteract TBI-induced neurological damage are available. Due to its complex and multifactorial pathophysiology (neuro-inflammation, cytotoxicity and astroglial scar formation), cell regeneration and survival in injured brain areas are strongly hampered. Recently, it has been proposed that adult neurogenesis may represent a new approach to counteract the post-traumatic neurodegeneration. In our laboratory, we have recently shown that physical exercise induces the long-lasting enhancement of subventricular (SVZ) adult neurogenesis in a p21 (negative regulator of neural progenitor proliferation)-null mice model, with a concomitant improvement of olfactory behavioral paradigms that are strictly dependent on SVZ neurogenesis. On the basis of this evidence, we have investigated the effect of running on SVZ neurogenesis and neurorepair processes in p21 knock-out mice that were subject to TBI at the end of a 12-day session of running. Our data indicate that runner p21 ko mice show an improvement in numerous post-trauma neuro-regenerative processes, including the following: (i) an increase in neuroblasts in the SVZ; (ii) an increase in the migration stream of new neurons from the SVZ to the damaged cortical region; (iii) an enhancement of new differentiating neurons in the peri-lesioned area; (iv) an improvement in functional recovery at various times following TBI. All together, these results suggest that a running-dependent increase in subventricular neural stem cells could represent a promising tool to improve the endogenous neuro-regenerative responses following brain trauma.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células-Madre Neurales , Carrera , Animales , Ratones , Ratones Noqueados , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/terapia , Neuronas , Neurogénesis , Proliferación Celular
2.
Neuropathol Appl Neurobiol ; 48(6): e12837, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35839783

RESUMEN

AIMS: Inherited or somatic mutations in the MRE11, RAD50 and NBN genes increase the incidence of tumours, including medulloblastoma (MB). On the other hand, MRE11, RAD50 and NBS1 protein components of the MRN complex are often overexpressed and sometimes essential in cancer. In order to solve the apparent conundrum about the oncosuppressive or oncopromoting role of the MRN complex, we explored the functions of NBS1 in an MB-prone animal model. MATERIALS AND METHODS: We generated and analysed the monoallelic or biallelic deletion of the Nbn gene in the context of the SmoA1 transgenic mouse, a Sonic Hedgehog (SHH)-dependent MB-prone animal model. We used normal and tumour tissues from these animal models, primary granule cell progenitors (GCPs) from genetically modified animals and NBS1-depleted primary MB cells, to uncover the effects of NBS1 depletion by RNA-Seq, by biochemical characterisation of the SHH pathway and the DNA damage response (DDR) as well as on the growth and clonogenic properties of GCPs. RESULTS: We found that monoallelic Nbn deletion increases SmoA1-dependent MB incidence. In addition to a defective DDR, Nbn+/- GCPs show increased clonogenicity compared to Nbn+/+ GCPs, dependent on an enhanced Notch signalling. In contrast, full NbnKO impairs MB development both in SmoA1 mice and in an SHH-driven tumour allograft. CONCLUSIONS: Our study indicates that Nbn is haploinsufficient for SHH-MB development whereas full NbnKO is epistatic on SHH-driven MB development, thus revealing a gene dosage-dependent effect of Nbn inactivation on SHH-MB development.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Cerebelosas , Proteínas de Unión al ADN , Meduloblastoma , Animales , Proteínas de Ciclo Celular/genética , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Proteínas de Unión al ADN/genética , Dosificación de Gen , Genes Esenciales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Transgénicos
3.
Oncogene ; 40(43): 6143-6152, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508175

RESUMEN

MYCN drives aggressive behavior and refractoriness to chemotherapy, in several tumors. Since MYCN inactivation in clinical settings is not achievable, alternative vulnerabilities of MYCN-driven tumors need to be explored to identify more effective and less toxic therapies. We previously demonstrated that PARP inhibitors enhance MYCN-induced replication stress and promote mitotic catastrophe, counteracted by CHK1. Here, we showed that PARP and CHK1 inhibitors synergized to induce death in neuroblastoma cells and in primary cultures of SHH-dependent medulloblastoma, their combination being more effective in MYCN amplified and MYCN overexpressing cells compared to MYCN non-amplified cells. Although the MYCN amplified IMR-32 cell line carrying the p.Val2716Ala ATM mutation showed the highest sensitivity to the drug combination, this was not related to ATM status, as indicated by CRISPR/Cas9-based correction of the mutation. Suboptimal doses of the CHK1 inhibitor MK-8776 plus the PARP inhibitor olaparib led to a MYCN-dependent accumulation of DNA damage and cell death in vitro and significantly reduced the growth of four in vivo models of MYCN-driven tumors, without major toxicities. Our data highlight the combination of PARP and CHK1 inhibitors as a new potential chemo-free strategy to treat MYCN-driven tumors, which might be promptly translated into clinical trials.


Asunto(s)
Neoplasias Cerebelosas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Ftalazinas/administración & dosificación , Piperazinas/administración & dosificación , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Sinergismo Farmacológico , Femenino , Amplificación de Genes/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Mutación , Neuroblastoma/genética , Neuroblastoma/patología , Ftalazinas/farmacología , Piperazinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Neurobiol ; 56(11): 7534-7556, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31062248

RESUMEN

In the subventricular zone (SVZ) of the adult brain, the neural stem cells (NSCs) ensure a continuous supply of new neurons to the olfactory bulb (OB), playing a key role in its plasticity and olfactory-related behavior. The activation and expansion of NSCs within the SVZ are finely regulated by environmental and intrinsic factors. Running represents one of the most powerful neurogenic stimuli, although is ineffective in enhancing SVZ neurogenesis. The cell cycle inhibitor p21 is an intrinsic inhibitor of NSCs' expansion through the maintenance of their quiescence and the restrain of neural progenitor proliferation. In this work, we decided to test whether running unveils the intrinsic neurogenic potential of p21-lacking NSCs. To test this hypothesis, we examined the effect of three different paradigms of voluntary running (5, 12, and 21 days) on SVZ neurogenesis of p21 knockout (KO) male mice at two different stages of development, 2 and 12 months of age. In vivo and in vitro data clearly demonstrate that physical activity is consistent with the activation and expansion of NSCs and with the enhancement of SVZ neurogenesis in p21 KO mice. We also found that 12 days of running contribute to the increase in the number of new neurons functionally active within the OB, which associates with an improvement in olfactory performance strictly dependent on adult SVZ neurogenesis, i.e., the odor detection threshold and short-term olfactory memory. These data suggest that in the adult SVZ of p21 KO mice, NSCs retain a high neurogenic potential, triggered by physical activity, with long-term consequences in olfactory-related behavior.


Asunto(s)
Conducta Animal , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Bulbo Olfatorio/metabolismo , Condicionamiento Físico Animal , Animales , Movimiento Celular , Autorrenovación de las Células , Fase G1 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo
5.
Sci Rep ; 9(1): 19623, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873117

RESUMEN

Growth and patterning of the cerebellum is compromised if granule cell precursors do not properly expand and migrate. During embryonic and postnatal cerebellar development, the Hedgehog pathway tightly regulates granule cell progenitors to coordinate appropriate foliation and lobule formation. Indeed, granule cells impairment or defects in the Hedgehog signaling are associated with developmental, neurodegenerative and neoplastic disorders. So far, scant and inefficient cellular models have been available to study granule cell progenitors, in vitro. Here, we validated a new culture method to grow postnatal granule cell progenitors as hedgehog-dependent neurospheres with prolonged self-renewal and ability to differentiate into granule cells, under appropriate conditions. Taking advantage of this cellular model, we provide evidence that Ptch1-KO, but not the SMO-M2 mutation, supports constitutive and cell-autonomous activity of the hedgehog pathway.


Asunto(s)
Diferenciación Celular , Cerebelo/metabolismo , Proteínas Hedgehog , Células-Madre Neurales/metabolismo , Transducción de Señal , Receptor Smoothened , Animales , Cerebelo/citología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA