RESUMEN
To improve the accuracy of saliency detection in challenging scenes such as small objects, multiple objects, and blur, we propose a light field saliency detection method via two-way focal stack fusion. The first way extracts latent depth features by calculating the transmittance of the focal stack to avoid the interference of out-of-focus regions. The second way analyzes the focused distribution and calculates the background probability of the slice, which can distinguish the foreground from the background. Extracting the potential cues of the focal stack through the two different ways can improve saliency detection in complex scenes. Finally, a multi-layer cellular automaton optimizer is utilized to incorporate compactness, focus, center prior, and depth features to obtain the final salient result. Comparison and ablation experiments are performed to verify the effectiveness of the proposed method. Experimental results prove that the proposed method demonstrates effectiveness in challenging scenarios and outperforms the state-of-the-art methods. They also verify that the depth and focus cues of the focal stack can enhance the performance of previous methods.