Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 29(6): 783-790, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37520815

RESUMEN

Root systems anchor plants to the substrate in addition to transporting water and nutrients, playing a fundamental role in plant survival. The LAZY1 gene mediates gravity signal transduction and participates in root and shoot development and auxin flow in many plants. In this study, a regulator, LsLAZY1, was identified from Leymus secalinus based on previous transcriptome data. The conserved domain and evolutionary relationship were further analyzed comprehensively. The role of LsLAZY1 in root development was investigated by genetic transformation and associated gravity response and phototropism assay. Subcellular localization showed that LsLAZY1 was localized in the nucleus. LsLAZY1 overexpression in Arabidopsis thaliana (Col-0) increased the length of the primary roots (PRs) and the number of lateral roots (LRs) compared to Col-0. Furthermore, 35S:LsLAZY1 transgenic seedlings affected auxin transport and showed a stronger gravitational and phototropic responses. It also promoted auxin accumulation at the root tips. These results indicated that LsLAZY1 affects root development and auxin transport. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01326-4.

2.
Microorganisms ; 10(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296291

RESUMEN

Broussonetia papyrifera has a high lignocellulose content leading to poor palatability and low digestion rate of ruminants. Thus, dynamic profiles of fermentation lignocellulose characteristics, microbial community structure, potential function, and interspecific relationships of B. papyrifera mixing with wheat bran in different ratios: 100:0 (BP100), 90:10 (BP90), 80:20 (BP80), and 65:35 (BP65) were investigated on ensiling days 5, 15, 30, and 50. The results showed that adding bran increased the degradation rate of hemicellulose, neutral detergent fiber, and the activities of filter paper cellulase, endoglucanase, acid protease, and neutral protease, especially in the ratio of 65:35. Lactobacillus, Pediococcus, and Weissella genus bacteria were the dominant genera in silage fermentation, and Pediococcus and Weissella genus bacteria regulated the process of silage fermentation. Compared with monospecific B. papyrifera silage, adding bran significantly increased the abundance of Weissella sp., and improved bacterial fermentation potential in BP65 (p < 0.05). Distance-based redundancy analysis showed that lactic acid bacteria (LAB) were significantly positive correlated with most lignocellulose content and degrading enzymes activities, while Monascus sp. and Syncephalastrum sp. were opposite (p < 0.05). Co-occurrence network analysis indicated that there were significant differences in microbial networks among different mixing ratios of B. papyrifera silage prepared with bran. There was a more complex, highly diverse and less competitive co-occurrence network in BP65, which was helpful to silage fermentation. In conclusion, B. papyrifera ensiled with bran improved the microbial community structure and the interspecific relationship and reduced the content of lignocellulose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA