Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2310273, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794868

RESUMEN

The widespread use of plastics, especially polyolefin including polyethylene and polypropylene, has led to severe environmental crises. Chemical recycling, a promising solution for extracting value from plastic waste, however, is underutilized due to its complexity. Here, a simple approach, silicone-assisted direct laser writing (SA-DLW) is developed, to upgrade polyolefin plastic waste into multifunctional porous graphene, called laser-induced graphene (LIG). This method involves infiltrating polyolefins with silicone, which retards ablation during the DLW process and supplies additional carbon atoms, as confirmed by experimental and molecular dynamic results. A remarkable conversion yield of 38.3% is achieved. The upgraded LIG exhibited a porous structure and high conductivity, which is utilized for the fabrication of diverse energy and electronic devices with commendable performance. Furthermore, the SA-DLW technique is versatile for upgrading plastic waste in various types and forms. Upgrading plastic waste in the form of fabric has significantly simplified pre-treatment. Finally, a wearable flex sensor is fabricated on the non-woven fabric of a discarded medical mask, which is applied for gesture monitoring. This work offers a simple but effective solution to upgrade plastic waste into valuable products, contributing to the mitigation of environmental challenges posed by plastic pollution.

2.
Phys Rev Lett ; 132(20): 206401, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829092

RESUMEN

Coexisting orders are key features of strongly correlated materials and underlie many intriguing phenomena from unconventional superconductivity to topological orders. Here, we report the coexistence of two interacting charge-density-wave (CDW) orders in EuTe_{4}, a layered crystal that has drawn considerable attention owing to its anomalous thermal hysteresis and a semiconducting CDW state despite the absence of perfect Fermi surface nesting. By accessing unoccupied conduction bands with time- and angle-resolved photoemission measurements, we find that monolayers and bilayers of Te in the unit cell host different CDWs that are associated with distinct energy gaps. The two gaps display dichotomous evolutions following photoexcitation, where the larger bilayer CDW gap exhibits less renormalization and faster recovery. Surprisingly, the CDW in the Te monolayer displays an additional momentum-dependent gap renormalization that cannot be captured by density-functional theory calculations. This phenomenon is attributed to interlayer interactions between the two CDW orders, which account for the semiconducting nature of the equilibrium state. Our findings not only offer microscopic insights into the correlated ground state of EuTe_{4} but also provide a general nonequilibrium approach to understand coexisting, layer-dependent orders in a complex system.

3.
Nat Mater ; 21(3): 284-289, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34916657

RESUMEN

Nanoscale periodic moiré patterns, for example those formed at the interface of a twisted bilayer of two-dimensional materials, provide opportunities for engineering the electronic properties of van der Waals heterostructures1-11. In this work, we synthesized the epitaxial heterostructure of 1T-TiTe2/1T-TiSe2 with various twist angles using molecular beam epitaxy and investigated the moiré pattern induced/enhanced charge density wave (CDW) states with scanning tunnelling microscopy. When the twist angle is near zero degrees, 2 × 2 CDW domains are formed in 1T-TiTe2, separated by 1 × 1 normal state domains, and trapped in the moiré pattern. The formation of the moiré-trapped CDW state is ascribed to the local strain variation due to atomic reconstruction. Furthermore, this CDW state persists at room temperature, suggesting its potential for future CDW-based applications. Such moiré-trapped CDW patterns were not observed at larger twist angles. Our study paves the way for constructing metallic twist van der Waals bilayers and tuning many-body effects via moiré engineering.

4.
Phys Rev Lett ; 131(19): 196401, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000430

RESUMEN

The unexpected chiral order observed in 1T-TiSe_{2} represents an exciting area to explore chirality in condensed matter, while its microscopic mechanism remains elusive. Here, we have identified three metastable collective modes-the so-called single-q modes-in single layer TiSe_{2}, which originate from the unstable phonon eigenvectors at the zone boundary and break the threefold rotational symmetry. We show that polarized laser pulse is a unique and efficient tool to reconstruct the transient potential energy surface, so as to drive phase transitions between these states. By designing sequent layers with chiral stacking order, we propose a practical means to realize chiral charge density waves in 1T-TiSe_{2}. Further, the constructed chiral structure is predicted to exhibit circular dichroism as observed in recent experiments. These facts strongly indicate the chirality transfer from photons to the electron subsystem, meanwhile being strongly coupled to the lattice degree of freedom. Our work provides new insights into understanding and modulating chirality in quantum materials that we hope will spark further experimental investigation.

5.
Nano Lett ; 20(12): 8854-8860, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33170704

RESUMEN

Water-solid interactions are crucial for many fundamental phenomena and technological processes. Here, we report a scanning tunneling microscopy study about the charge density wave (CDW) transition in 1T-TaS2 driven by a single water dipole layer. At low temperature, pristine 1T-TaS2 is a prototypical CDW compound with 13 × 13 charge order. After growing a highly ordered water adlayer, a new charge order with 3 × 3 periodicity emerges on water-covered 1T-TaS2. After water desorption, the entire 1T-TaS2 surface appears as localized 13 × 13 CDW domains that are separated by residual-water-cluster-pinned CDW domain walls. First-principles calculations show that the electric dipole moments in the water adlayer attract electrons to the top layer of 1T-TaS2, which shifts the phonon softening mode and induces the 13 × 13 to 3 × 3 charge order transition. Our results pave the way for creating new collective quantum states of matter with a molecular dipole layer.

6.
Materials (Basel) ; 16(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687675

RESUMEN

Material innovation plays a very important role in technological progress and industrial development. Traditional experimental exploration and numerical simulation often require considerable time and resources. A new approach is urgently needed to accelerate the discovery and exploration of new materials. Machine learning can greatly reduce computational costs, shorten the development cycle, and improve computational accuracy. It has become one of the most promising research approaches in the process of novel material screening and material property prediction. In recent years, machine learning has been widely used in many fields of research, such as superconductivity, thermoelectrics, photovoltaics, catalysis, and high-entropy alloys. In this review, the basic principles of machine learning are briefly outlined. Several commonly used algorithms in machine learning models and their primary applications are then introduced. The research progress of machine learning in predicting material properties and guiding material synthesis is discussed. Finally, a future outlook on machine learning in the materials science field is presented.

7.
Nat Commun ; 14(1): 2223, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076513

RESUMEN

The chiral charge density wave is a many-body collective phenomenon in condensed matter that may play a role in unconventional superconductivity and topological physics. Two-dimensional chiral charge density waves provide the building blocks for the fabrication of various stacking structures and chiral homostructures, in which physical properties such as chiral currents and the anomalous Hall effect may emerge. Here, we demonstrate the phase manipulation of two-dimensional chiral charge density waves and the design of in-plane chiral homostructures in 1T-TaS2. We use chiral Raman spectroscopy to directly monitor the chirality switching of the charge density wave-revealing a temperature-mediated reversible chirality switching. We find that interlayer stacking favours homochirality configurations, which is confirmed by first-principles calculations. By exploiting the interlayer chirality-locking effect, we realise in-plane chiral homostructures in 1T-TaS2. Our results provide a versatile way to manipulate chiral collective phases by interlayer coupling in layered van der Waals semiconductors.

8.
Nanomaterials (Basel) ; 12(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889560

RESUMEN

Graphene has been regarded as a potential application material in the field of new energy conversion and storage because of its unique two-dimensional structure and excellent physical and chemical properties. However, traditional graphene preparation methods are complicated in-process and difficult to form patterned structures. In recent years, laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment, etc. In this paper, we summarized a variety of preparation methods for graphene. The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were reviewed. Then, two strategies for large-scale production of LIG were briefly described. We also discussed the wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage. Finally, we briefly outlined the future trends of this research direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA