Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Biochem ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566200

RESUMEN

Accumulating data have revealed the pivotal function of tripartite motif protein 38 (TRIM38) in tumors. In view of this, this investigation aims to explore the function and potential mechanism of TRIM38 in non-small cell lung cancer (NSCLC). A xenotypic tumor model was established in vivo by subcutaneously injecting NSCLC cells (2 × 106 cells) in tail vein of each mouse. Relative expression of TRIM38 mRNA was detected via quantitative real-time polymerase chain reaction (qRT-PCR). For exploring the role of TRIM38 in vivo and in vitro, mice or NSCLC cells were divided into two groups: the vector group and the TRIM38 overexpression group. Also, protein expression levels of TRIM38, Vimentin, E-cadherin, and N-cadherin were determined using western blotting and immunohistochemistry staining. Tumor nodules of mouse lung tissues were assessed via performing H&E staining. Moreover, proliferation of NSCLC cells was evaluated through colony formation and CCK-8 assays. Further, migration and invasion of NSCLC cells were assessed through wound healing and transwell assays. Protein levels of pathway-related proteins including p-p65, p65, IκB, p-IκB, p-AMPK, AMPK, and NLRP3 were examined through western blotting analysis. Tumor lung tissues of mice and NSCLC cells showed low protein and mRNA expression of TRIM38. Functionally, up-regulation of TRIM38 reduced the number of tumor nodules and suppressed epithelial-to-mesenchymal transition (EMT) in lung tissues of mice. Furthermore, up-regulation of TRIM38 in NSCLC cells inhibited migration, invasion, EMT, and proliferation. With respect to the mechanism, in vivo experiments, the inhibitory effects of TRIM38 overexpression on tumor nodules, and EMT were reversed by AMPK inhibitor. In vitro experiments, TRIM38 overexpression caused down-regulation of p-IκB and p-p65 as well as up-regulation of p-AMPK. The inhibitory effects of TRIM38 overexpression on migration, proliferation, invasion, and EMT of NSCLC cells were reversed by overexpression of NLRP3. Concurrently, AMPK inhibitor enhanced the TRIM38-overexpressed NSCLC cell's abilities in migration, clone formation, invasion, and proliferation. TRIM38 regulated the AMPK/NF-κB/NLRP3 pathway to suppress the NSCLC's progression and development.

2.
Biochem Pharmacol ; 226: 116415, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972426

RESUMEN

The hypoxic microenvironment in esophageal carcinoma is an important factor promoting the rapid progression of malignant tumor. This study was to investigate the lactylation of Axin1 on glycolysis in esophageal carcinoma cells under hypoxia exposure. Hypoxia treatment increases pan lysine lactylation (pan-kla) levels of both TE1 and EC109 cells. Meanwhile, ECAR, glucose consumption and lactate production were also upregulated in both TE1 and EC109 cells. The expression of embryonic stem cell transcription factors NANOG and SOX2 were enhanced in the hypoxia-treated cells. Axin1 overexpression partly reverses the induction effects of hypoxia treatment in TE1 and EC109 cells. Moreover, lactylation of Axin1 protein at K147 induced by hypoxia treatment promotes ubiquitination modification of Axin1 protein to promote glycolysis and cell stemness of TE1 and EC109 cells. Mutant Axin1 can inhibit ECAR, glucose uptake, lactate secretion, and cell stemness in TE1 and EC109 cells under normal or hypoxia conditions. Meanwhile, mutant Axin1 further enhanced the effects of 2-DG on inhibiting glycolysis and cell stemness. Overexpression of Axin1 also inhibited tumor growth in vivo, and was related to suppressing glycolysis. In conclusion, hypoxia treatment promoted the glycolysis and cell stemness of esophageal carcinoma cells, and increased the lactylation of Axin1 protein. Overexpression of Axin1 functioned as a glycolysis inhibitor, and suppressed the effects of hypoxia exposure in vitro and inhibited tumor growth in vivo. Mechanically, hypoxia induces the lactylation of Axin1 protein and promotes the ubiquitination of Axin1 to degrade the protein, thereby exercising its anti-glycolytic function.


Asunto(s)
Proteína Axina , Neoplasias Esofágicas , Glucólisis , Ratones Desnudos , Humanos , Proteína Axina/metabolismo , Proteína Axina/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Glucólisis/fisiología , Animales , Línea Celular Tumoral , Ratones , Ratones Endogámicos BALB C , Hipoxia de la Célula/fisiología
3.
Cell Biochem Biophys ; 81(2): 325-336, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36690880

RESUMEN

Human papillomavirus (HPV) is a risk factor for lung cancer. However, the underlying mechanisms are not known. Long noncoding RNAs (lncRNAs) have been found to play an important role in the occurrence and development of lung cancer due to their particular characteristics. HPV-induced lung carcinogenesis is incompletely defined. We aimed to screen and clarify the functions of lncRNAs that are differentially expressed in HPV-related lung cancer. We found that lncRNA SNHG1 is upregulated in lung cancer cells infected with HPV16 E6 by qRT‒PCR. Further results demonstrated that SNHG1 overexpression facilitates the tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Our results also indicated that SNHG1 might function in lung cancer by binding with EGFR. Further studies revealed that SNHG1 overexpression could activate the nuclear factor κb (NF-κB) pathway, which increases the expression of interleukin-6 (IL-6). We also found that IL-6 can activate the STAT3 pathway, which promotes VEGF-D expression. These results expanded our understanding of SNHG1 as a new avenue for therapeutic intervention against lung cancer progression. Upregulation of SNHG1 by HPV infection might be an undefined link between lung cancer and HPV.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Infecciones por Papillomavirus , ARN Largo no Codificante , Humanos , Proliferación Celular/genética , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Virus del Papiloma Humano , Interleucina-6/metabolismo , Neoplasias Pulmonares/genética , MicroARNs/genética , Infecciones por Papillomavirus/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA