RESUMEN
Biallelic germline mutations in BRCA2 occur in the Fanconi anemia (FA)-D1 subtype of the rare pediatric disorder, FA, characterized clinically by severe congenital abnormalities and a very high propensity to develop malignancies early in life. Clinical and genetic data from 96 FA-D1 patients with biallelic BRCA2 mutations were collected and used to develop a new cancer risk prediction score system based on the specific mutations in BRCA2. This score takes into account the location of frameshift/stop and missense mutations relative to exon 11 of BRCA2, which encodes the major sites for interaction with the RAD51 recombinase, and uses the MaxEnt and HBond splicing scores to analyze potential splice site perturbations. Among 75 FA-D1 patients with ascertained BRCA2 mutations, 66 patients developed 102 malignancies, ranging from one to three independent tumors per individual. The median age at the clinical presentation of peripheral embryonal tumors was 1.0, at the onset of hematologic malignancies 1.8 and at the manifestation of CNS tumors 2.7 years, respectively. Patients who received treatment lived longer than those without. Using our novel scoring system, we could distinguish three distinct cancer risk groups among FA-D1 patients: in the first, patients developed their initial malignancy at a median age of 1.3 years (n = 36, 95% CI = 0.9-1.8), in the second group at 2.3 years (n = 17, 95% CI = 1.4-4.4) and in the third group at 23.0 years (n = 22, 95% CI = 4.3-n/a). Therefore, this scoring system allows, for the first time, to predict the cancer manifestation of FA-D1 patients simply based on the type and position of the mutations in BRCA2.
Asunto(s)
Anemia de Fanconi , Neoplasias , Humanos , Niño , Lactante , Anemia de Fanconi/genética , Proteína BRCA2/genética , Neoplasias/genética , Mutación , Recombinasa Rad51/genéticaRESUMEN
BACKGROUND: Traditional genomic profiling and mutation analysis of single cells like Circulating Tumor Cells (CTCs) fails to capture post-translational and functional alterations of proteins, often leading to limited treatment efficacy. To overcome this gap, we developed a miniaturized 'protein analysis on the single cell level' workflow-baptized ZeptoCTC. It integrates established technologies for single-cell isolation with sensitive Reverse Phase Protein Array (RPPA) analysis, thus enabling the comprehensive assessment of multiple protein expression and activation in individual CTCs. METHODS: The ZeptoCTC workflow involves several critical steps. Firstly, individual cells are labeled and isolated. This is followed by cell lysis and the printing of true single cell lysate preparations onto a ZeptoChip using a modified micromanipulator, CellCelector™. The printed lysates then undergo fluorescence immunoassay RPPA protein detection using a ZeptoReader. Finally, signal quantification is carried out with Image J software, ensuring precise measurement of multiple protein levels. RESULTS: The efficacy of ZeptoCTC was demonstrated through various applications. Initially, it was used for measuring EpCAM protein expression, a standard marker for CTC detection, revealing higher levels in single MCF-7 over MDA-MB-231 tumor cells. Furthermore, in Capivasertib (Akt-inhibitor)-treated MCF-7 single cells, ZeptoCTC detected a 2-fold increase in the pAkt/Akt ratio compared to control cells, and confirmed co-performed bulk-cell western blot analysis results. Notably, when applied to individual CTCs from metastasized breast cancer patients, ZeptoCTC revealed significant differences in protein activation levels, particularly in measured pAkt and pErk levels, compared to patient-matched WBCs. Moreover, it successfully differentiated between CTCs from patients with different Akt1 genotypes, highlighting its potential to determine the activation status of druggable cancer driving proteins for individual and targeted treatment decision making. CONCLUSIONS: The ZeptoCTC workflow represents a valuable tool in single cell cancer research, crucial for personalized medicine. It permits detailed analysis of key proteins and their activation status of targeted, cancer-driven signaling pathways in single cell samples, aiding in understanding tumor response, progression, and treatment efficacy beyond bulk analysis. The method significantly advances clinical investigations in cancer, improving treatment precision and effectiveness. The workflow will be applicable to protein analysis on other types of single cells like relevant in stem cell, neuropathology and hemopoietic cell research.
Asunto(s)
Células Neoplásicas Circulantes , Medicina de Precisión , Transducción de Señal , Análisis de la Célula Individual , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Línea Celular Tumoral , Análisis por Matrices de Proteínas , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/sangre , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
BACKGROUND: The phenotypes of tumor cells change during disease progression, but invasive rebiopsies of metastatic lesions are not always feasible. Here we aimed to determine whether initially HER2-negative metastatic breast cancer (MBC) patients with HER2-positive circulating tumor cells (CTCs) benefit from a HER2-targeted therapy. METHODS: The open-label, interventional randomized phase III clinical trial (EudraCT Number 2010-024238-46, CliniclTrials.gov Identifier: NCT01619111) recruited from March 2012 until September 2019 with a follow-up duration of 19.5 months. It was a multicenter clinical trial with 94 participating German study centers. A total of 2137 patients with HER2-negative MBC were screened for HER2-positive CTCs with a final modified intention-to-treat population of 101 patients. Eligible patients were randomized to standard therapy with or without lapatinib. Primary study endpoints included CTC clearance (no CTCs at the end of treatment) and secondary endpoints were progression-free survival, overall survival (OS), and safety. RESULTS: In both treatment arms CTC clearance at first follow-up visit-although not being significantly different for both arms at any time point-was significantly associated with improved OS (42.4 vs 14.1 months; P = 0.002). Patients treated additionally with lapatinib had a significantly improved OS over patients receiving standard treatment (20.5 vs 9.1 months, P = 0.009). CONCLUSIONS: DETECT III is the first clinical study indicating that phenotyping of CTCs might have clinical utility for stratification of MBC cancer patients to HER2-targeting therapies. The OS benefit could be related to lapatinib, but further studies are required to prove this clinical observation. ClinicalTrials.gov Registration Number: NCT01619111.
Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Progresión de la Enfermedad , CinéticaRESUMEN
Circulating tumor cells (CTCs) are constantly shed by tumor tissue and can serve as a valuable analyte for a gene expression analysis from a liquid biopsy. However, a high proportion of CTCs can be apoptotic leading to rapid mRNA decay and challenging the analysis of their transcriptome. We established a workflow to enrich, to identify, and to isolate single CTCs including the discrimination of apoptotic and non-apoptotic CTCs for further single CTC transcriptome analysis. Viable tumor cells-we first used cells from breast cancer cell lines followed by CTCs from metastatic breast cancer patients-were enriched with the CellSearch system from diagnostic leukapheresis products, identified by immunofluorescence analysis for neoplastic markers, and isolated by micromanipulation. Then, their cDNA was generated, amplified, and sequenced. In order to exclude early apoptotic tumor cells, staining with Annexin V coupled to a fluorescent dye was used. Annexin V staining intensity was associated with decreased RNA integrity as well as lower numbers of total reads, exon reads, and detected genes in cell line cells and CTCs. A comparative RNA analysis of single cells from MDA-MB-231 and MCF7 cell lines revealed the expected differential transcriptome profiles. Enrichment and staining procedures of cell line cells that were spiked into blood had only little effect on the obtained RNA sequencing data compared to processing of naïve cells. Further, the detection of transcripts of housekeeping genes such as GAPDH was associated with a significantly higher quality of expression data from CTCs. This workflow enables the enrichment, detection, and isolation of single CTCs for individual transcriptome analyses. The discrimination of apoptotic and non-apoptotic cells allows to focus on CTCs with a high RNA integrity to ensure a successful transcriptome analysis.
Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Humanos , Femenino , Células Neoplásicas Circulantes/patología , Flujo de Trabajo , Anexina A5 , Neoplasias de la Mama/patología , Análisis de Secuencia de ARN , ARN , Biomarcadores de TumorRESUMEN
BACKGROUND: Decidualization of endometrial cells is the prerequisite for embryo implantation and subsequent placenta formation and is induced by rising progesterone levels following ovulation. One of the hormone receptors contributing to endometrial homeostasis is Progesterone Receptor Membrane Component 1 (PGRMC1), a non-classical membrane-bound progesterone receptor with yet unclear function. In this study, we aimed to investigate how PGRMC1 contributes to human decidualization. METHODS: We first analyzed PGRMC1 expression profile during a regular menstrual cycle in RNA-sequencing datasets. To further explore the function of PGRMC1 in human decidualization, we implemented an inducible decidualization system, which is achieved by culturing two human endometrial stromal cell lines in decidualization-inducing medium containing medroxyprogesterone acetate and 8-Br-cAMP. In our system, we measured PGRMC1 expression during hormone induction as well as decidualization status upon PGRMC1 knockdown at different time points. We further conferred proximity ligation assay to identify PGRMC1 interaction partners. RESULTS: In a regular menstrual cycle, PGRMC1 mRNA expression is gradually decreased from the proliferative phase to the secretory phase. In in vitro experiments, we observed that PGRMC1 expression follows a rise-to-decline pattern, in which its expression level initially increased during the first 6 days after induction (PGRMC1 increasing phase) and decreased in the following days (PGRMC1 decreasing phase). Knockdown of PGRMC1 expression before the induction led to a failed decidualization, while its knockdown after induction did not inhibit decidualization, suggesting that the progestin-induced 'PGRMC1 increasing phase' is essential for normal decidualization. Furthermore, we found that the interactions of prohibitin 1 and prohibitin 2 with PGRMC1 were induced upon progestin treatment. Knocking down each of the prohibitins slowed down the decidualization process compared to the control, suggesting that PGRMC1 cooperates with prohibitins to regulate decidualization. CONCLUSIONS: According to our findings, PGRMC1 expression followed a progestin-induced rise-to-decline expression pattern during human endometrial decidualization process; and the correct execution of this expression program was crucial for successful decidualization. Thereby, the results of our in vitro model explained how PGRMC1 dysregulation during decidualization may present a new perspective on infertility-related diseases.
Asunto(s)
Progesterona , Prohibitinas , Embarazo , Femenino , Humanos , Progesterona/farmacología , Progesterona/metabolismo , Decidua/metabolismo , Receptores de Progesterona/genética , Progestinas/metabolismo , Endometrio/metabolismo , Células del Estroma/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismoRESUMEN
The limited sensitivity of circulating tumor cell (CTC) detection in pancreatic adenocarcinoma (PDAC) stems from their extremely low concentration in the whole circulating blood, necessitating enhanced detection methodologies. This study sought to amplify assay-sensitivity by employing diagnostic leukapheresis (DLA) to screen large blood volumes. Sixty patients were subjected to DLA, with a median processed blood volume of ~ 2.8 L and approximately 5% of the resulting DLA-product analyzed using CellSearch (CS). Notably, DLA significantly increased CS-CTC detection to 44% in M0-patients and 74% in M1-patients, yielding a 60-fold increase in CS-CTC enumeration. DLA also provided sufficient CS-CTCs for genomic profiling, thereby delivering additional genomic information compared to tissue biopsy samples. DLA CS-CTCs exhibited a pronounced negative prognostic impact on overall survival (OS), evidenced by a reduction in OS from 28.6 to 8.5 months (univariate: p = 0.002; multivariable: p = 0.043). Additionally, a marked enhancement in sensitivity was achieved (by around 3-4-times) compared to peripheral blood (PB) samples, with positive predictive values for OS being preserved at around 90%. Prognostic relevance of CS-CTCs in PDAC was further validated in PB-samples from 228 PDAC patients, consolidating the established association between CTC-presence and reduced OS (8.5 vs. 19.0 months, p < 0.001). In conclusion, DLA-derived CS-CTCs may serve as a viable tool for identifying high-risk PDAC-patients and aiding the optimization of multimodal treatment strategies. Moreover, DLA enables comprehensive diagnostic profiling by providing ample CTC material, reinforcing its utility as a reliable liquid-biopsy approach. This high-volume liquid-biopsy strategy presents a potential pathway for enhancing clinical management in this malignancy.
Asunto(s)
Adenocarcinoma , Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Adenocarcinoma/diagnóstico , Células Neoplásicas Circulantes/patología , Biopsia Líquida/métodos , Biomarcadores de Tumor , Volumen Sanguíneo , Neoplasias PancreáticasRESUMEN
BACKGROUND: Circulating tumour cells (CTCs) are mainly enriched based on the epithelial cell adhesion molecule (EpCAM). Although it was shown that an EpCAM low-expressing CTC fraction is not captured by such approaches, knowledge about its prognostic and predictive relevance and its relation to EpCAM-positive CTCs is lacking. METHODS: We developed an immunomagnetic assay to enrich CTCs from metastatic breast cancer patients EpCAM independently using antibodies against Trop-2 and CD-49f and characterised their EpCAM expression. DNA of single EpCAM high expressing and low expressing CTCs was analyzed regarding chromosomal aberrations and predictive mutations. Additionally, we compared CTC-enrichment on the CellSearch system using this antibody mix and the EpCAM based enrichment. RESULTS: Both antibodies acted synergistically in capturing CTCs. Patients with EpCAM high-expressing CTCs had a worse overall and progression-free survival. EpCAM high- and low-expressing CTCs presented similar chromosomal aberrations and mutations indicating a close evolutionary relationship. A sequential enrichment of CTCs from the EpCAM-depleted fraction yielded a population of CTCs not captured EpCAM dependently but harbouring predictive information. CONCLUSIONS: Our data indicate that EpCAM low-expressing CTCs could be used as a valuable tumour surrogate material-although they may be prognostically less relevant than EpCAM high-expressing CTCs-and have particular benefit if no CTCs are detected using EpCAM-dependent technologies.
Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Molécula de Adhesión Celular Epitelial , Células Neoplásicas Circulantes , Femenino , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Aberraciones Cromosómicas , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Células Neoplásicas Circulantes/patologíaRESUMEN
Cell loss during detection and isolation of circulating tumor cells (CTCs) is a challenge especially when label-free pre-enrichment technologies are used without the aid of magnetic particles. Although microfluidic systems can remove the majority of "contaminating" white blood cells (WBCs), their remaining numbers are still impeding single CTC isolation, thus making additional separation steps needed. This study aimed to develop a workflow from blood-to-single CTC for complex cell suspensions by testing two microwell formats. In the first step, different cell lines were used to compare the performances of Sievewell™ 370 K (TOK, Japan) and CellCelector™ Nanowell U25 (ALS Automated Lab Solutions, Germany) slides for cell labelling and single-cell micromanipulation. Confounding levels of auto-fluorescence inherent to different plastic materials used to cast the microwells, staining recovery rates, and cell isolation rates were determined. In the second step, three different blood preservation tubes were tested for RNA analysis. Lastly, the established workflow was applied to isolate CTCs from peripheral blood samples obtained from metastasized breast cancer (mBC) patients for single-cell DNA and RNA analysis. The detection of CTCs in Sievewell slides profit from better signal-to-noise ratios in the fluorescence channels mainly used for CTC detection. In addition, due to its design, Sievewell supports direct in situ CTC labelling, which minimizes cell loss and leads to single-cell recovery rates after staining of approx. 94%. Detection of PIK3CA mutations in single CTCs verified the applicability of the workflow for the analysis of genomic DNA of CTCs. Furthermore, combined with blood preservation up to 48 h at room temperature in LBguard tubes, panel RT-PCR transcript analysis was successful for single cell line cells and CTCs, respectively. The combined use of Sievewell microwell slides and CellCelector™ automated micromanipulation system improves single CTC detection, labelling and isolation from complex cell suspensions. This approach is especially valuable when samples of high cellular content are processed.
Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Humanos , Femenino , Células Neoplásicas Circulantes/patología , Separación Celular , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Microfluídica , ARN , Línea Celular TumoralRESUMEN
BACKGROUND: Clinical management of women carrying a germline pathogenic variant (PV) in the BRCA1/2 genes demands for accurate age-dependent estimators of breast cancer (BC) risks, which were found to be affected by a variety of intrinsic and extrinsic factors. Here we assess the contribution of polygenic risk scores (PRSs) to the occurrence of extreme phenotypes with respect to age at onset, namely, primary BC diagnosis before the age of 35 years (early diagnosis, ED) and cancer-free survival until the age of 60 years (late/no diagnosis, LD) in female BRCA1/2 PV carriers. METHODS: Overall, estrogen receptor (ER)-positive, and ER-negative BC PRSs as developed by Kuchenbaecker et al. for BC risk discrimination in female BRCA1/2 PV carriers were employed for PRS computation in a curated sample of 295 women of European descent carrying PVs in the BRCA1 (n=183) or the BRCA2 gene (n=112), and did either fulfill the ED criteria (n=162, mean age at diagnosis: 28.3 years, range: 20 to 34 years) or the LD criteria (n=133). Binomial logistic regression was applied to assess the association of standardized PRSs with either ED or LD under adjustment for patient recruitment criteria for germline testing and localization of BRCA1/2 PVs in the corresponding BC or ovarian cancer (OC) cluster regions. RESULTS: For BRCA1 PV carriers, the standardized overall BC PRS displayed the strongest association with ED (odds ratio (OR) = 1.62; 95% confidence interval (CI): 1.16-2.31, p<0.01). Additionally, statistically significant associations of selection for the patient recruitment criteria for germline testing and localization of pathogenic PVs outside the BRCA1 OC cluster region with ED were observed. For BRCA2 PV carriers, the standardized PRS for ER-negative BC displayed the strongest association (OR = 2.27, 95% CI: 1.45-3.78, p<0.001). CONCLUSIONS: PRSs contribute to the development of extreme phenotypes of female BRCA1/2 PV carriers with respect to age at primary BC diagnosis. Construction of optimized PRS SNP sets for BC risk stratification in BRCA1/2 PV carriers should be the task of future studies with larger, well-defined study samples. Furthermore, our results provide further evidence, that localization of PVs in BC/OC cluster regions might be considered in BC risk calculations for unaffected BRCA1/2 PV carriers.
Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Edad de Inicio , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/patología , Femenino , Genes BRCA2 , Predisposición Genética a la Enfermedad , Humanos , Mutación , Neoplasias Ováricas/genética , Factores de RiesgoRESUMEN
BACKGROUND: PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. METHODS: The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. RESULTS: Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. CONCLUSION: PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animales , Apoptosis/fisiología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis , Proliferación Celular/fisiología , Progresión de la Enfermedad , Femenino , Xenoinjertos , Homeostasis , Humanos , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Células Tumorales CultivadasRESUMEN
BACKGROUND: The role of the BARD1 gene in breast cancer (BC) and ovarian cancer (OC) predisposition remains elusive, as published case-control investigations have revealed controversial results. We aimed to assess the role of deleterious BARD1 germline variants in BC/OC predisposition in a sample of 4920 BRCA1/2-negative female BC/OC index patients of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). METHODS: A total of 4469 female index patients with BC, 451 index patients with OC, and 2767 geographically matched female control individuals were screened for loss-of-function (LoF) mutations and potentially damaging rare missense variants in BARD1. All patients met the inclusion criteria of the GC-HBOC for germline testing and reported at least one relative with BC or OC. Additional control datasets (Exome Aggregation Consortium, ExAC; Fabulous Ladies Over Seventy, FLOSSIES) were included for the calculation of odds ratios (ORs). RESULTS: We identified LoF variants in 23 of 4469 BC index patients (0.51%) and in 36 of 37,265 control individuals (0.10%), resulting in an OR of 5.35 (95% confidence interval [CI] = 3.17-9.04; P < 0.00001). BARD1-mutated BC index patients showed a significantly younger mean age at first diagnosis (AAD; 42.3 years, range 24-60 years) compared with the overall study sample (48.6 years, range 17-92 years; P = 0.00347). In the subgroup of BC index patients with an AAD < 40 years, an OR of 12.04 (95% CI = 5.78-25.08; P < 0.00001) was observed. An OR of 7.43 (95% CI = 4.26-12.98; P < 0.00001) was observed when stratified for an AAD < 50 years. LoF variants in BARD1 were not significantly associated with BC in the subgroup of index patients with an AAD ≥ 50 years (OR = 2.29; 95% CI = 0.82-6.45; P = 0.11217). Overall, rare and predicted damaging BARD1 missense variants were significantly more prevalent in BC index patients compared with control individuals (OR = 2.15; 95% CI = 1.26-3.67; P = 0.00723). Neither LoF variants nor predicted damaging rare missense variants in BARD1 were identified in 451 familial index patients with OC. CONCLUSIONS: Due to the significant association of germline LoF variants in BARD1 with early-onset BC, we suggest that intensified BC surveillance programs should be offered to women carrying pathogenic BARD1 gene variants.
Asunto(s)
Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Mutación con Pérdida de Función , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Oportunidad Relativa , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/genética , Prevalencia , Adulto JovenRESUMEN
INTRODUCTION: Circulating tumor cells (CTCs) may be used to improve cancer diagnosis, prognosis, and treatment. However, because knowledge regarding CTC biology is limited and the numbers of CTCs and CTC-positive cancer patients are low, progress in this field is slow. We addressed this limitation by combining diagnostic leukapheresis (DLA) and microfluidic enrichment to obtain large numbers of viable CTCs from metastasized breast cancer patients. METHODS: DLA was applied to 9 patients, and 7.5 mL of peripheral blood was drawn. CTCs were enriched with the Parsortix™ system. The quality of CTCs from fresh and cryopreserved DLA products was tested, and CTCs were cultured in vitro. Single uncultured and cultured CTCs were isolated by micromanipulation to determine different parameters, such as genomic aberrations and mutation profiles of selected tumor-associated genes. Expression levels of estrogen receptor and HER2/neu were monitored during in vitro culture. RESULTS: Viable CTCs from peripheral blood and fresh or frozen DLA products could be enriched. DLA increased the likelihood of successful CTC culture. Cryopreserved DLA products could be stored with minimal CTC loss and no overt reduction in the tumor cell quality and viability during an observation period of up to 3 years. The analyzed parameters did not change during in vitro culture. DLA samples with high CTC numbers and lower ratios of apoptotic CTCs were more likely to grow in culture. CONCLUSIONS: The increased CTC numbers from fresh or cryopreserved DLA products facilitate multiple functional and molecular analyses and, thus, could improve our knowledge of their biology.
Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Leucaféresis/métodos , Células Neoplásicas Circulantes , Neoplasias de la Mama/patología , Recuento de Células/métodos , Humanos , Microfluídica/métodos , Células Neoplásicas Circulantes/patologíaRESUMEN
BACKGROUND: The prognostic relevance of circulating tumour cells (CTCs) in metastatic breast cancer (MBC) patients has been confirmed by several clinical trials. However, predictive blood-based biomarkers for stratification of patients for targeted therapy are still lacking. The DETECT studies explore the utility of CTC phenotype for treatment decisions in patients with HER2 negative MBC. Associated with this concept is a plethora of translational projects aiming to identify potential predictive biomarkers. The androgen receptor (AR) is expressed in over 70% of hormone receptor-positive and up-to 45% of triple-negative tumours. Studies has indicated the promising nature of AR as a new therapy target with a clinical benefit rate for anti-AR treatment in MBC patients up to 25% The aim of this analysis was the characterization of CTCs regarding the expression of the AR using immunofluorescence. METHODS: MBC patients were screened for the HER2-status of CTCs in the DETECT studies. In a subset of CTC-positive patients (n = 67) an additional blood sample was used for immunomagnetic enrichment of CTCs using the CellSearch® Profile Kit prior to transfer of the cells onto cytospin slides. Establishment of immunofluorescence staining for the AR was performed using prostate cancer cell lines LNCaP and DU145 as positive and negative control, respectively. Staining of DAPI, pan-cytokeratin (CK) and CD45 was applied to identify nucleated epithelial cells as CTCs and to exclude leucocytes. RESULTS: Co-staining of the AR, CK and CD45 according to the above mentioned workflow has been successfully established using cell lines with known AR expression spiked into the blood samples from healthy donors. For this translational project, samples were analysed from 67 patients participating in the DETECT studies. At least one CTC was detected in 37 out of 67 patients (56%). In 16 of these 37 patients (43%) AR-positive CTCs were detected. In eight out of 25 patients (32%) with more than one CTC, AR-positive and AR-negative CTCs were observed. CONCLUSION: In 43% of the analysed CTC samples from patients with MBC the AR expression has been detected. The predictive value of AR expression in CTCs remains to be evaluated in further trials.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Receptores Androgénicos/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/tratamiento farmacológico , Ensayos Clínicos como Asunto , Femenino , Humanos , Inmunohistoquímica , Metástasis de la Neoplasia , Estadificación de Neoplasias , Resultado del TratamientoRESUMEN
BACKGROUND: Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. METHODS: We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. RESULTS: Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00-27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6%; 95%-CI 24.7 - 47.7%) compared to 16 women of controls (26.7%; 95%-CI 16.1 to 39.7%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. CONCLUSIONS: To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results.
Asunto(s)
Proteína BRCA1/genética , Biomarcadores de Tumor , Neoplasias de la Mama/genética , Reparación del ADN , Predisposición Genética a la Enfermedad , Eliminación de Secuencia , Adulto , Edad de Inicio , Anciano , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Bases de Datos Genéticas , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Alemania/epidemiología , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Vigilancia de la Población , Medición de Riesgo , Factores de RiesgoRESUMEN
Among various nanoparticles tested for pharmacological applications over the recent years, graphene quantum dots (GQDs) seem to be promising candidates for the construction of drug delivery systems due to their superior biophysical and biochemical properties. The subcellular fate of incorporated nanomaterial is decisive for transporting pharmaceuticals into target cells. Therefore a detailed characterization of the uptake of GQDs into different breast cancer models was performed. The demonstrated accumulation inside the endolysosomal system might be the reason for the particles' low toxicity, but has to be overcome for cytosolic or nuclear drug delivery. Furthermore, the penetration of GQDs into precision-cut mammary tumor slices was studied. These constitute a far closer to reality model system than monoclonal cell lines. The constant uptake into the depth of the tissue slices underlines the systems' potential for drug delivery into solid tumors.
Asunto(s)
Neoplasias de la Mama/metabolismo , Grafito/metabolismo , Puntos Cuánticos/metabolismo , Neoplasias de la Mama/patología , Células Epiteliales/metabolismo , Grafito/química , Humanos , Nanoestructuras/química , Tamaño de la Partícula , Puntos Cuánticos/química , Fracciones Subcelulares/metabolismo , Técnicas de Cultivo de Tejidos , Células Tumorales CultivadasRESUMEN
Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 × 10-115 . There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24) nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants.
Asunto(s)
Proteína BRCA2/genética , Variación Genética , Modelos Genéticos , Empalme del ARN/genética , Proteína BRCA2/metabolismo , Secuencia de Bases , Calibración , Línea Celular , Exones/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mitomicina/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
BACKGROUND: Germline mutations in the BRIP1 gene have been described as conferring a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC) pathogenesis remains controversial. METHODS: To assess the role of deleterious BRIP1 germline mutations in BC/OC predisposition, 6341 well-characterized index patients with BC, 706 index patients with OC, and 2189 geographically matched female controls were screened for loss-of-function (LoF) mutations and potentially damaging missense variants. All index patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germline testing and tested negative for pathogenic BRCA1/2 variants. RESULTS: BRIP1 LoF mutations confer a high OC risk in familial index patients (odds ratio (OR) = 20.97, 95% confidence interval (CI) = 12.02-36.57, P < 0.0001) and in the subgroup of index patients with late-onset OC (OR = 29.91, 95% CI = 14.99-59.66, P < 0.0001). No significant association of BRIP1 LoF mutations with familial BC was observed (OR = 1.81 95% CI = 1.00-3.30, P = 0.0623). In the subgroup of familial BC index patients without a family history of OC there was also no apparent association (OR = 1.42, 95% CI = 0.70-2.90, P = 0.3030). In 1027 familial BC index patients with a family history of OC, the BRIP1 mutation prevalence was significantly higher than that observed in controls (OR = 3.59, 95% CI = 1.43-9.01; P = 0.0168). Based on the negative association between BRIP1 LoF mutations and familial BC in the absence of an OC family history, we conclude that the elevated mutation prevalence in the latter cohort was driven by the occurrence of OC in these families. Compared with controls, predicted damaging rare missense variants were significantly more prevalent in OC (P = 0.0014) but not in BC (P = 0.0693) patients. CONCLUSIONS: To avoid ambiguous results, studies aimed at assessing the impact of candidate predisposition gene mutations on BC risk might differentiate between BC index patients with an OC family history and those without. In familial cases, we suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects cannot be excluded.
Asunto(s)
Neoplasias de la Mama/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Predisposición Genética a la Enfermedad , Neoplasias Ováricas/genética , ARN Helicasas/genética , Adulto , Anciano , Neoplasias de la Mama/patología , Femenino , Estudios de Asociación Genética , Mutación de Línea Germinal , Humanos , Mutación con Pérdida de Función/genética , Persona de Mediana Edad , Neoplasias Ováricas/patología , Linaje , Factores de RiesgoRESUMEN
PURPOSE: Classification of rare BRCA1 missense variants presents a major challenge for the counseling and treatment of patients. Variant classification can be complicated by conflicting lines of evidence. BRCA1 c.5309G>T p.(Gly1770Val) has been shown to abrogate BRCA1 protein homologous DNA repair; however, multiple sequence alignment demonstrates a lack of sequence conservation at this position, suggesting that glycine at position 1770 may not be essential for cellular maintenance in humans. We analyzed clinical information to resolve the classification of BRCA1 c.5309G>T p.(Gly1770Val). METHODS: We performed multifactorial likelihood analysis combining segregation data for 14 informative families, and breast tumor histopathological data for 17 variant carriers, ascertained through the ENIGMA consortium. RESULTS: Bayes segregation analysis gave a likelihood ratio of 101:1 in favor of pathogenicity. The vast majority of breast tumors showed features indicative of pathogenic variant carrier status, resulting in a likelihood ratio of 15800794:1 towards pathogenicity. Despite a low prior probability of pathogenicity (0.03) based on bioinformatic prediction, multifactorial likelihood analysis including segregation and histopathology analysis gave a posterior probability of > 0.99 and final classification of Pathogenic. CONCLUSIONS: We provide evidence that BRCA1 c.5309G>T p.(Gly1770Val), previously described as a Moroccan founder variant, should be treated as a disease-causing variant despite a lack of evolutionary conservation at this amino acid position. Additionally, we stress that bioinformatic information should be used in combination with other data, either direct clinical evidence or some form of clinical calibration, to arrive at a final clinical classification.
Asunto(s)
Proteína BRCA1/genética , Neoplasias de la Mama/genética , Evolución Molecular , Predisposición Genética a la Enfermedad , Animales , Teorema de Bayes , Neoplasias de la Mama/patología , Secuencia Conservada , Reparación del ADN/genética , Femenino , Humanos , Ratones , Mutación Missense/genética , Alineación de SecuenciaRESUMEN
Diagnostic leukapheresis (DLA) is based on continuous centrifugation that collects mononuclear cells from peripheral blood with a density of 1.055-1.08 g/ml. As epithelial cells have a similar density, DLA cocollects circulating tumor cell (CTCs) along with the targeted mononuclear cells. Here, we report on our single center experience applying DLA in 40 nonmetastatic and metastatic breast cancer patients and its impact on CTC detection. We found that the use of just 5% of the DLA product (corresponding to a median peripheral blood volume of around 60 ml) in the CellSearch® assay already leads to a significant increase in CTC detection frequency and yield. The implementation of the method was unproblematic, and we did not observe any adverse events in our patient cohort. Extrapolating the CTC counts in the DLA samples to the whole DLA product indicated that enormous CTC numbers could be harvested by this approach (around 205x more CTCs than in the 7.5 ml blood sample in M1 patients). In conclusion, DLA is a clinically safe method to collect CTCs from liters of blood enabling a real liquid biopsy. Yet, further technical developments are required to process whole DLA products and exploit the full potential of this approach. As it is foreseeable that DLA will be used by several groups, and hopefully ultimately brought to the patients in a routine setting, we discuss recommendations on the minimum of required information for reporting on DLAs to allow comparison across different approaches. © 2018 International Society for Advancement of Cytometry.
Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Leucaféresis/métodos , Células Neoplásicas Circulantes/patología , Adolescente , Neoplasias de la Mama/sangre , Recuento de Células/métodos , Estudios de Cohortes , Femenino , Humanos , Biopsia Líquida/métodos , Estándares de ReferenciaRESUMEN
BACKGROUND: There is no international consensus up to which age women with a diagnosis of triple-negative breast cancer (TNBC) and no family history of breast or ovarian cancer should be offered genetic testing for germline BRCA1 and BRCA2 (gBRCA) mutations. Here, we explored the association of age at TNBC diagnosis with the prevalence of pathogenic gBRCA mutations in this patient group. METHODS: The study comprised 802 women (median age 40 years, range 19-76) with oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 negative breast cancers, who had no relatives with breast or ovarian cancer. All women were tested for pathogenic gBRCA mutations. Logistic regression analysis was used to explore the association between age at TNBC diagnosis and the presence of a pathogenic gBRCA mutation. RESULTS: A total of 127 women with TNBC (15.8%) were gBRCA mutation carriers (BRCA1: n = 118, 14.7%; BRCA2: n = 9, 1.1%). The mutation prevalence was 32.9% in the age group 20-29 years compared to 6.9% in the age group 60-69 years. Logistic regression analysis revealed a significant increase of mutation frequency with decreasing age at diagnosis (odds ratio 1.87 per 10 year decrease, 95%CI 1.50-2.32, p < 0.001). gBRCA mutation risk was predicted to be > 10% for women diagnosed below approximately 50 years. CONCLUSIONS: Based on the general understanding that a heterozygous mutation probability of 10% or greater justifies gBRCA mutation screening, women with TNBC diagnosed before the age of 50 years and no familial history of breast and ovarian cancer should be tested for gBRCA mutations. In Germany, this would concern approximately 880 women with newly diagnosed TNBC per year, of whom approximately 150 are expected to be identified as carriers of a pathogenic gBRCA mutation.