RESUMEN
The endocytic pathway is a complex network of highly dynamic organelles, which has been traditionally studied by quantitative fluorescence microscopy. The data generated by this method can be overwhelming and its analysis, even for the skilled microscopist, is tedious and error-prone. We developed SpatTrack, an open source, platform-independent program collecting a variety of methods for analysis of vesicle dynamics and distribution in living cells. SpatTrack performs 2D particle tracking, trajectory analysis and fitting of diffusion models to the calculated mean square displacement. It allows for spatial analysis of detected vesicle patterns including calculation of the radial distribution function and particle-based colocalization. Importantly, all analysis tools are supported by Monte Carlo simulations of synthetic images. This allows the user to assess the reliability of the analysis and to study alternative scenarios. We demonstrate the functionality of SpatTrack by performing a detailed imaging study of internalized fluorescence-tagged Niemann Pick C2 (NPC2) protein in human disease fibroblasts. Using SpatTrack, we show that NPC2 rescued the cholesterol-storage phenotype from a subpopulation of late endosomes/lysosomes (LE/LYSs). This was paralleled by repositioning and active transport of NPC2-containing vesicles to the cell surface. The potential of SpatTrack for other applications in intracellular transport studies will be discussed.
Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Endocitosis , Interpretación de Imagen Asistida por Computador/métodos , Programas Informáticos , Proteínas Portadoras/metabolismo , Línea Celular , Glicoproteínas/metabolismo , Humanos , Microscopía Fluorescente/métodos , Transporte de Proteínas , Proteínas de Transporte VesicularRESUMEN
We established a murine periodontitis model by local injection of lipopolysaccharide of Porphyromonas gingivalis (Pg-LPS) into the gingival sulcus of mandibular left incisor four times with 48-h interval. The histological examination of the periodontal tissues demonstrated that significant loss of periodontal bone and ligaments was observed in the lesion side with abundant inflammatory cell infiltration. Two days after the last injection, Cy5-labelled siRNA/chitosan particles were injected intraperitoneally (ip). The chitosan/siRNA particles were taken up by peritoneal macrophages, which subsequently migrated to the inflamed gingival area evaluated by in vivo imaging. The localization of macrophages in the inflamed region was further confirmed by immunofluorescent staining. The present report demonstrates that intragingival injection of Pg-LPS can be used to create an experimental model of periodontal inflammation in mice and that recruitment of macrophages with chitosan/siRNA nanoparticles to the inflamed area opens the possibility of an RNAi-based therapeutic approach using chitosan as a carrier in periodontitis.