Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(4): 800-817.e22, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32302590

RESUMEN

Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.


Asunto(s)
Núcleo Celular/fisiología , Heterocromatina/fisiología , Mecanotransducción Celular/fisiología , Animales , Línea Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/fisiología , Heterocromatina/metabolismo , Humanos , Masculino , Mecanorreceptores/fisiología , Células Madre Mesenquimatosas , Ratones , Estrés Mecánico
2.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594662

RESUMEN

Desmosome diseases are caused by dysfunction of desmosomes, which anchor intermediate filaments (IFs) at sites of cell-cell adhesion. For many decades, the focus of attention has been on the role of actin filament-associated adherens junctions in development and disease, especially cancer. However, interference with the function of desmosomes, their molecular constituents or their attachments to IFs has now emerged as a major contributor to a variety of diseases affecting different tissues and organs including skin, heart and the digestive tract. The first Alpine desmosome disease meeting (ADDM) held in Grainau, Germany, in October 2022 brought together international researchers from the basic sciences with clinical experts from diverse fields to share and discuss their ideas and concepts on desmosome function and dysfunction in the different cell types involved in desmosome diseases. Besides the prototypic desmosomal diseases pemphigus and arrhythmogenic cardiomyopathy, the role of desmosome dysfunction in inflammatory bowel diseases and eosinophilic esophagitis was discussed.


Asunto(s)
Desmosomas , Enfermedad , Humanos , Adhesión Celular , Desmosomas/fisiología , Pénfigo
3.
EMBO Rep ; 22(8): e52507, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34309183

RESUMEN

Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.


Asunto(s)
Pliegue de Proteína , Proteostasis , Supervivencia Celular , Proteoma/metabolismo , Estrés Mecánico
4.
Kidney Int ; 101(4): 733-751, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34929254

RESUMEN

Glomerular diseases are a major cause for chronic kidney disorders. In most cases podocyte injury is causative for disease development. Cytoskeletal rearrangements and morphological changes are hallmark features of podocyte injury and result in dedifferentiation and loss of podocytes. Here, we establish a link between the Par3 polarity complex and actin regulators necessary to establish and maintain podocyte architecture by utilizing mouse and Drosophila models to characterize the functional role of Par3A and Par3B and its fly homologue Bazooka in vivo. Only simultaneous inactivation of both Par3 proteins caused a severe disease phenotype. Rescue experiments in Drosophila nephrocytes revealed atypical protein kinase C (aPKC)-Par6 dependent and independent effects. While Par3A primarily acts via aPKC-Par6, Par3B function was independent of Par6. Actin-associated synaptopodin protein levels were found to be significantly upregulated upon loss of Par3A/B in mouse podocytes. Tropomyosin2, which shares functional similarities with synaptopodin, was also elevated in Bazooka depleted nephrocytes. The simultaneous depletion of Bazooka and Tropomyosin2 resulted in a partial rescue of the Bazooka knockdown phenotype and prevented increased Rho1-GTP, a member of a GTPase protein family regulating the cytoskeleton. The latter contribute to the nephrocyte phenotype observed upon loss of Bazooka. Thus, we demonstrate that Par3 proteins share a high functional redundancy but also have specific functions. Par3A acts in an aPKC-Par6 dependent way and regulates RhoA-GTP levels, while Par3B exploits Par6 independent functions influencing synaptopodin localization. Hence, Par3A and Par3B link elements of polarity signaling and actin regulators to maintain podocyte architecture.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila , Podocitos , Actinas/metabolismo , Animales , Polaridad Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de la Membrana/genética , Ratones , Podocitos/metabolismo , Proteína Quinasa C
5.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32075937

RESUMEN

Dendritic cells (DCs) are one of the earliest targets of HIV-1 infection acting as a "Trojan horse," concealing the virus from the innate immune system and delivering it to T cells via virological synapses (VS). To explicate how the virus is trafficked through the cell to the VS and evades degradation, a high-throughput small interfering RNA screen targeting membrane trafficking proteins was performed in monocyte-derived DCs. We identified several proteins including BIN-1 and RAB7L1 that share common roles in transport from endosomal compartments. Depletion of target proteins resulted in an accumulation of virus in intracellular compartments and significantly reduced viral trans-infection via the VS. By targeting endocytic trafficking and retromer recycling to the plasma membrane, we were able to reduce the virus's ability to accumulate at budding microdomains and the VS. Thus, we identify key genes involved in a pathway within DCs that is exploited by HIV-1 to traffic to the VS.IMPORTANCE The lentivirus human immunodeficiency virus (HIV) targets and destroys CD4+ T cells, leaving the host vulnerable to life-threatening opportunistic infections associated with AIDS. Dendritic cells (DCs) form a virological synapse (VS) with CD4+ T cells, enabling the efficient transfer of virus between the two cells. We have identified cellular factors that are critical in the induction of the VS. We show that ADP-ribosylation factor 1 (ARF1), bridging integrator 1 (BIN1), and Rab GTPases RAB7L1 and RAB8A are important regulators of HIV-1 trafficking to the VS and therefore the infection of CD4+ T cells. We found these cellular factors were essential for endosomal protein trafficking and formation of the VS and that depletion of target proteins prevented virus trafficking to the plasma membrane by retaining virus in intracellular vesicles. Identification of key regulators in HIV-1 trans-infection between DC and CD4+ T cells has the potential for the development of targeted therapy to reduce trans-infection of HIV-1 in vivo.


Asunto(s)
Células Dendríticas/inmunología , Infecciones por VIH/genética , VIH-1/inmunología , Sinapsis Inmunológicas/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/virología , Infecciones por VIH/virología , VIH-1/patogenicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Monocitos/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Transporte de Proteínas/genética , Proteínas Supresoras de Tumor/metabolismo , Virión/metabolismo , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas de Unión al GTP rab/metabolismo
6.
Nature ; 584(7820): 196-198, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32728152

Asunto(s)
Piel , Células Madre
7.
Soft Matter ; 16(13): 3325-3337, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196025

RESUMEN

Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.


Asunto(s)
Cadherinas/genética , Adhesión Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Cadherinas/química , Forma de la Célula/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Humanos , Propiedades de Superficie
8.
PLoS Genet ; 12(12): e1006463, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27911893

RESUMEN

The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.


Asunto(s)
Proteasas ATP-Dependientes/genética , Enfermedades Desmielinizantes/genética , Cabello/metabolismo , Metaloendopeptidasas/genética , Mitocondrias/genética , Proteasas ATP-Dependientes/biosíntesis , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Muerte Celular/genética , Supervivencia Celular/genética , Cabello/crecimiento & desarrollo , Humanos , Metaloendopeptidasas/biosíntesis , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Células de Schwann/metabolismo
9.
Physiol Rev ; 91(2): 691-731, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21527735

RESUMEN

This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.


Asunto(s)
Cadherinas/genética , Cadherinas/fisiología , Fenómenos Fisiológicos Celulares/genética , Animales , Citoesqueleto/fisiología , Humanos , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología
10.
J Immunol ; 195(11): 5296-5308, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26519530

RESUMEN

Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. In this study, we investigated whether myeloid cell-restricted IR/IGF-1R signaling provides a pathophysiologic link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the insulin and IGF-1 receptor in myeloid cells (IR/IGF-1R(MKO)). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1R(MKO) mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UV B radiation, IR/IGF-1R(MKO) mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal proinflammatory cytokine expression was similar in control and IR/IGF-1R(MKO) mice, during the late stage, epidermal cytokine expression was sustained in controls but virtually abrogated in IR/IGF-1R(MKO) mice. This distinct kinetic of epidermal cytokine expression was paralleled by proinflammatory macrophage activation in controls and a noninflammatory phenotype in mutants. Collectively, our findings provide evidence for a proinflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal cross-talk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling, including DM.


Asunto(s)
Dermatitis/inmunología , Macrófagos/inmunología , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Piel/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Dermatitis/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/inmunología , Inflamación/genética , Inflamación/inmunología , Resistencia a la Insulina/genética , Resistencia a la Insulina/inmunología , Activación de Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Dodecil Sulfato de Sodio/efectos adversos , Rayos Ultravioleta/efectos adversos
11.
Am J Physiol Renal Physiol ; 311(1): F112-9, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27122542

RESUMEN

Polarity signaling through the atypical PKC (aPKC)-Par polarity complex is essential for the development and maintenance of the podocyte architecture and the function of the glomerular filtration barrier of the kidney. To study the contribution of Par3A in this complex, we generated a novel Pard3 podocyte-specific knockout mouse model by targeting exon 6 of the Pard3 gene. Genetic deletion of Pard3a did not impair renal function, neither at birth nor later in life. Even challenging the animals did not result in glomerular disease. Despite its well-established role in aPKC-mediated signaling, Par3A appears to be dispensable for the function of the glomerular filtration barrier. Moreover, its homolog Pard3b, and not Pard3a, is the dominant Par3 gene expressed in podocytes and found at the basis of the slit diaphragm, where it partially colocalizes with podocin. In conclusion, Par3A function is either dispensable for slit diaphragm integrity, or compensatory mechanisms and a high redundancy of the different polarity proteins, including Par3B, Lgl, or PALS1, maintain the function of the glomerular filtration barrier, even in the absence of Par3A.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Barrera de Filtración Glomerular/fisiología , Riñón/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Moléculas de Adhesión Celular/genética , Proteínas de Ciclo Celular , Células Cultivadas , Femenino , Riñón/patología , Lipopolisacáridos/toxicidad , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Cultivo Primario de Células , Albúmina Sérica Bovina/toxicidad
12.
Cell Mol Life Sci ; 72(13): 2599-612, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25687506

RESUMEN

Both acute and chronic liver diseases are associated with ample re-modeling of the liver parenchyma leading to functional impairment, which is thus obviously the cause or the consequence of the disruption of the epithelial integrity. It was, therefore, the aim of this study to investigate the distribution of the adherens junction components E- and N-cadherin, which are important determinants of tissue cohesion. E-cadherin was expressed in periportal but not in perivenous hepatocytes. In contrast, N-cadherin was more enriched towards the perivenous hepatocytes. In agreement, ß-catenin, which links both cadherins via α-catenin to the actin cytoskeleton, was expressed ubiquitously. This zonal expression of cadherins was preserved in acute liver injury after treatment with acetaminophen or partial hepatectomy, but disrupted in chronic liver damage like in non-alcoholic steatohepatitis (NASH) or α1-antitrypsin deficiency. Hepatocyte proliferation during acetaminophen-induced liver damage was predominant at the boundary between the damaged perivenous and the intact periportal parenchyma indicating a minor contribution of periportal hepatocytes to liver regeneration. In NASH livers, an oval cell reaction was observed pointing to massive tissue damage coinciding with the gross impairment of hepatocyte proliferation. In the liver parenchyma, metabolic functions are distributed heterogeneously. For example, the expression of phosphoenolpyruvate carboxykinase and E-cadherin overlapped in periportal hepatocytes. Thus, during liver regeneration after acute damage, the intact periportal parenchyma might sustain essential metabolic support like glucose supply or ammonia detoxification. However, disruption of epithelial integrity during chronic challenges may increase susceptibility to metabolic liver diseases such as NASH or vice versa. This might suggest the regulatory integration of tissue cohesion and metabolic functions in the liver.


Asunto(s)
Uniones Adherentes/metabolismo , Cadherinas/metabolismo , Hepatopatías/metabolismo , Hígado/metabolismo , Modelos Biológicos , Citoesqueleto de Actina/metabolismo , Animales , Western Blotting , Proteínas de Unión al ADN/genética , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Hepatopatías/patología , Ratones , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , beta Catenina/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(3): 842-7, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277553

RESUMEN

Cell-cell and cell-matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell-cell adhesions modulate the physical cohesion between contractile cells is sufficient to recreate the spatial rearrangement of traction forces observed experimentally with varying strength of cadherin-based adhesions. This work defines the importance of cadherin-based cell-cell adhesions in coordinating mechanical activity of epithelial cells and has implications for the mechanical regulation of epithelial tissues during development, homeostasis, and disease.


Asunto(s)
Cadherinas/fisiología , Adhesión Celular/fisiología , Queratinocitos/fisiología , Animales , Fenómenos Biofísicos , Cadherinas/antagonistas & inhibidores , Cadherinas/deficiencia , Cadherinas/genética , Calcio/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/análisis , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/fisiología , Queratinocitos/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Ratones , Modelos Biológicos , ARN Interferente Pequeño/genética
14.
Exp Cell Res ; 328(2): 296-302, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25128813

RESUMEN

Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Polaridad Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Proteína Quinasa C/metabolismo , Animales , Humanos , Mamíferos/metabolismo , Mamíferos/parasitología
15.
Mol Ther ; 22(5): 929-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24468915

RESUMEN

Autologous human keratinocytes (HK) forming sheet grafts are approved as skin substitutes. Genetic engineering of HK represents a promising technique to improve engraftment and survival of transplants. Although efficacious in keratinocyte-directed gene transfer, retro-/lentiviral vectors may raise safety concerns when applied in regenerative medicine. We therefore optimized adeno-associated viral (AAV) vectors of the serotype 2, characterized by an excellent safety profile, but lacking natural tropism for HK, through capsid engineering. Peptides, selected by AAV peptide display, engaged novel receptors that increased cell entry efficiency by up to 2,500-fold. The novel targeting vectors transduced HK with high efficiency and a remarkable specificity even in mixed cultures of HK and feeder cells. Moreover, differentiated keratinocytes in organotypic airlifted three-dimensional cultures were transduced following topical vector application. By exploiting comparative gene analysis we further succeeded in identifying αvß8 integrin as a target receptor thus solving a major challenge of directed evolution approaches and describing a promising candidate receptor for cutaneous gene therapy.


Asunto(s)
Ingeniería Genética , Terapia Genética , Péptidos/genética , Anomalías Cutáneas/terapia , Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos , Humanos , Integrina alfa5/genética , Queratinocitos/metabolismo , Queratinocitos/patología , Péptidos/uso terapéutico , Anomalías Cutáneas/genética , Anomalías Cutáneas/patología , Transducción Genética , Tropismo
16.
J Cell Sci ; 125(Pt 15): 3501-10, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22935653

RESUMEN

The establishment and maintenance of cell and tissue polarity is crucial for a range of biological processes, such as oriented division, migration, adhesion and barrier function. The molecular pathways that regulate cell and tissue polarity have been extensively studied in lower organisms as well as in mammalian cell culture. By contrast, relatively little is still known about how polarization regulates the in vivo formation and homeostasis of mammalian tissues. Several recent papers have identified crucial roles for mammalian polarity proteins in a range of in vivo processes, including stem cell behavior, cell fate determination, junction formation and maintenance and organ development. Using the epidermis of the skin as a model system, this Commentary aims to discuss the in vivo significance of cell and tissue polarity in the regulation of mammalian tissue morphogenesis, homeostasis and disease. Specifically, we discuss the mechanisms by which the molecular players previously identified to determine polarity in vitro and/or in lower organisms regulate epidermal stratification; orient cell division to drive cell fate determination within the epidermal lineage; and orient hair follicles. We also describe how altered polarity signaling contributes to skin cancer.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/fisiología , Epidermis/fisiología , Animales , Diferenciación Celular/fisiología , Células Epidérmicas , Humanos , Transducción de Señal
17.
J Cell Sci ; 125(Pt 8): 1877-83, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22328523

RESUMEN

Adhesion differences between cell populations are in principle a source of strong morphogenetic forces promoting cell sorting, boundary formation and tissue positioning, and cadherins are main mediators of cell adhesion. However, a direct link between cadherin expression, differential adhesion and morphogenesis has not yet been determined for a specific process in vivo. To identify such a connection, we modulated the expression of C-cadherin in the Xenopus laevis gastrula, and combined this with direct measurements of cell adhesion-related parameters. Our results show that gastrulation is surprisingly tolerant of overall changes in adhesion. Also, as expected, experimentally generated, cadherin-based adhesion differences promote cell sorting in vitro. Importantly, however, such differences do not lead to the sorting of cells in the embryo, showing that differential adhesion is not sufficient to drive morphogenesis in this system. Compensatory recruitment of cadherin protein to contacts between cadherin-deprived and -overexpressing cells could contribute to the prevention of sorting in vivo.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/fisiología , Animales , Cadherinas/genética , Adhesión Celular , Gástrula/citología , Gástrula/embriología , Gástrula/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética
18.
J Cell Sci ; 125(Pt 4): 896-905, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22275433

RESUMEN

The small GTPase Rac1 is ubiquitously expressed in proliferating and differentiating layers of the epidermis and hair follicles. Previously, Rac1 was shown to regulate stem cell behaviour in these compartments. We have asked whether Rac1 has, in addition, a specific, stem-cell-independent function in the regulation of terminal hair follicle differentiation. To address this, we have expressed a constitutively active mutant of Rac1, L61Rac1, only in the basal epidermal layer and outer root sheath of mice possessing an epidermis-specific deletion of endogenous Rac1, which experience severe hair loss. The resulting 'rescue' mice exhibited a hair coat throughout their lives. Therefore, expression of Rac1 activity in the keratin-14-positive compartment of the skin is sufficient for the formation of hair follicles and hair in normal quantities. The quality of hair formed in rescue mice was, however, not normal. Rescue mice showed a grey, dull hair coat, whereas that of wild-type and L61Rac1-transgenic mice was black and shiny. Hair analysis in rescue mice revealed altered structures of the hair shaft and the cuticle and disturbed organization of medulla cells and pigment distribution. Disorganization of medulla cells correlates with the absence of cortical, keratin-filled spikes that normally protrude from the cortex into the medulla. The desmosomal cadherin Dsc2, which normally decorates these protrusions, was found to be reduced or absent in the hair of rescue mice. Our study demonstrates regulatory functions for Rac1 in the formation of hair structure and pigmentation and thereby identifies, for the first time, a role for Rac1 in terminal differentiation.


Asunto(s)
Diferenciación Celular , Color del Cabello/fisiología , Cabello/citología , Cabello/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Desmocolinas , Femenino , Cabello/crecimiento & desarrollo , Cabello/patología , Folículo Piloso/crecimiento & desarrollo , Humanos , Masculino , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Morfogénesis , Factores de Tiempo , Transgenes
19.
Development ; 138(3): 495-505, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21205794

RESUMEN

The disintegrin and metalloproteinase Adam10 has been implicated in the regulation of key signaling pathways that determine skin morphogenesis and homeostasis. To address the in vivo relevance of Adam10 in the epidermis, we have selectively disrupted Adam10 during skin morphogenesis and in adult skin. K14-Cre driven epidermal Adam10 deletion leads to perinatal lethality, barrier impairment and absence of sebaceous glands. A reduction of spinous layers, not associated with differences in either proliferation or apoptosis, indicates that loss of Adam10 triggers a premature differentiation of spinous keratinocytes. The few surviving K14-Adam10-deleted mice and mice in which Adam10 was deleted postnatally showed loss of hair, malformed vibrissae, epidermal hyperproliferation, cyst formation, thymic atrophy and upregulation of the cytokine thymic stromal lymphopoetin (TSLP), thus indicating non cell-autonomous multi-organ disease resulting from a compromised barrier. Together, these phenotypes closely resemble skin specific Notch pathway loss-of-function phenotypes. Notch processing is indeed strongly reduced resulting in decreased levels of Notch intracellular domain fragment and functional Notch signaling. The data identify Adam10 as the major Site-2 processing enzyme for Notch in the epidermis in vivo, and thus as a central regulator of skin development and maintenance.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Células Epidérmicas , Epidermis/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Inmunohistoquímica , Queratinocitos/citología , Queratinocitos/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
Artículo en Inglés | MEDLINE | ID: mdl-38858071

RESUMEN

How tissue architecture and function emerge during development and what facilitates their resilience and homeostatic dynamics during adulthood is a fundamental question in biology. Biological tissue barriers such as the skin epidermis have evolved strategies that integrate dynamic cellular turnover with high resilience against mechanical and chemical stresses. Interestingly, both dynamic and resilient functions are generated by a defined set of molecular and cell-scale processes, including adhesion and cytoskeletal remodeling, cell shape changes, cell division, and cell movement. These traits are coordinated in space and time with dynamic changes in cell fates and cell mechanics that are generated by contractile and adhesive forces. In this review, we discuss how studies on epidermal morphogenesis and homeostasis have contributed to our understanding of the dynamic interplay between biochemical and mechanical signals during tissue morphogenesis and homeostasis, and how the material properties of tissues dictate how cells respond to these active stresses, thereby linking cell-scale behaviors to tissue- and organismal-scale changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA