Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Circ Res ; 133(6): 450-462, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555352

RESUMEN

BACKGROUND: Calcium (Ca) sparks are elementary units of subcellular Ca release in cardiomyocytes and other cells. Accordingly, Ca spark imaging is an essential tool for understanding the physiology and pathophysiology of Ca handling and is used to identify new drugs targeting Ca-related cellular dysfunction (eg, cardiac arrhythmias). The large volumes of imaging data produced during such experiments require accurate and high-throughput analysis. METHODS: We developed a new software tool SparkMaster 2 (SM2) for the analysis of Ca sparks imaged by confocal line-scan microscopy, combining high accuracy, flexibility, and user-friendliness. SM2 is distributed as a stand-alone application requiring no installation. It can be controlled using a simple-to-use graphical user interface, or using Python scripting. RESULTS: SM2 is shown to have the following strengths: (1) high accuracy at identifying Ca release events, clearly outperforming previous highly successful software SparkMaster; (2) multiple types of Ca release events can be identified using SM2: Ca sparks, waves, miniwaves, and long sparks; (3) SM2 can accurately split and analyze individual sparks within spark clusters, a capability not handled adequately by prior tools. We demonstrate the practical utility of SM2 in two case studies, investigating how Ca levels affect spontaneous Ca release, and how large-scale release events may promote release refractoriness. SM2 is also useful in atrial and smooth muscle myocytes, across different imaging conditions. CONCLUSIONS: SparkMaster 2 is a new, much-improved user-friendly software for accurate high-throughput analysis of line-scan Ca spark imaging data. It is free, easy to use, and provides valuable built-in features to facilitate visualization, analysis, and interpretation of Ca spark data. It should enhance the quality and throughput of Ca spark and wave analysis across cell types, particularly in the study of arrhythmogenic Ca release events in cardiomyocytes.


Asunto(s)
Señalización del Calcio , Programas Informáticos , Humanos , Señalización del Calcio/fisiología , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Atrios Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
2.
EMBO J ; 39(5): e102622, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31985069

RESUMEN

The L-type Ca2+ channel CaV 1.2 governs gene expression, cardiac contraction, and neuronal activity. Binding of α-actinin to the IQ motif of CaV 1.2 supports its surface localization and postsynaptic targeting in neurons. We report a bi-functional mechanism that restricts CaV 1.2 activity to its target sites. We solved separate NMR structures of the IQ motif (residues 1,646-1,664) bound to α-actinin-1 and to apo-calmodulin (apoCaM). The CaV 1.2 K1647A and Y1649A mutations, which impair α-actinin-1 but not apoCaM binding, but not the F1658A and K1662E mutations, which impair apoCaM but not α-actinin-1 binding, decreased single-channel open probability, gating charge movement, and its coupling to channel opening. Thus, α-actinin recruits CaV 1.2 to defined surface regions and simultaneously boosts its open probability so that CaV 1.2 is mostly active when appropriately localized.


Asunto(s)
Actinina/metabolismo , Canales de Calcio Tipo L/metabolismo , Calmodulina/metabolismo , Actinina/genética , Sustitución de Aminoácidos , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Calmodulina/genética , Humanos , Mutación , Neuronas/metabolismo , Unión Proteica
3.
Microcirculation ; : e12871, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805589

RESUMEN

OBJECTIVE: This study aimed to determine nicotine's impact on receptor-mediated cyclic adenosine monophosphate (cAMP) synthesis in vascular smooth muscle (VSM). We hypothesize that nicotine impairs ß adrenergic-mediated cAMP signaling in VSM, leading to altered vascular reactivity. METHODS: The effects of nicotine on cAMP signaling and vascular function were systematically tested in aortic VSM cells and acutely isolated aortas from mice expressing the cAMP sensor TEpacVV (Camper), specifically in VSM (e.g., CamperSM). RESULTS: Isoproterenol (ISO)-induced ß-adrenergic production of cAMP in VSM was significantly reduced in cells from second-hand smoke (SHS)-exposed mice and cultured wild-type VSM treated with nicotine. The decrease in cAMP synthesis caused by nicotine was verified in freshly isolated arteries from a mouse that had cAMP sensor expression in VSM (e.g., CamperSM mouse). Functionally, the changes in cAMP signaling in response to nicotine hindered ISO-induced vasodilation, but this was reversed by immediate PDE3 inhibition. CONCLUSIONS: These results imply that nicotine alters VSM ß adrenergic-mediated cAMP signaling and vasodilation, which may contribute to the dysregulation of vascular reactivity and the development of vascular complications for nicotine-containing product users.

4.
Circ Res ; 131(12): 1018-1033, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36345826

RESUMEN

BACKGROUND: L-type CaV1.2 channels undergo cooperative gating to regulate cell function, although mechanisms are unclear. This study tests the hypothesis that phosphorylation of the CaV1.2 pore-forming subunit α1C at S1928 mediates vascular CaV1.2 cooperativity during diabetic hyperglycemia. METHODS: A multiscale approach including patch-clamp electrophysiology, super-resolution nanoscopy, proximity ligation assay, calcium imaging' pressure myography, and Laser Speckle imaging was implemented to examine CaV1.2 cooperativity, α1C clustering, myogenic tone, and blood flow in human and mouse arterial myocytes/vessels. RESULTS: CaV1.2 activity and cooperative gating increase in arterial myocytes from patients with type 2 diabetes and type 1 diabetic mice, and in wild-type mouse arterial myocytes after elevating extracellular glucose. These changes were prevented in wild-type cells pre-exposed to a PKA inhibitor or cells from knock-in S1928A but not S1700A mice. In addition, α1C clustering at the surface membrane of wild-type, but not wild-type cells pre-exposed to PKA or P2Y11 inhibitors and S1928A arterial myocytes, was elevated upon hyperglycemia and diabetes. CaV1.2 spatial and gating remodeling correlated with enhanced arterial myocyte Ca2+ influx and contractility and in vivo reduction in arterial diameter and blood flow upon hyperglycemia and diabetes in wild-type but not S1928A cells/mice. CONCLUSIONS: These results suggest that PKA-dependent S1928 phosphorylation promotes the spatial reorganization of vascular α1C into "superclusters" upon hyperglycemia and diabetes. This triggers CaV1.2 activity and cooperativity, directly impacting vascular reactivity. The results may lay the foundation for developing therapeutics to correct CaV1.2 and arterial function during diabetic hyperglycemia.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Ratones , Animales , Músculo Liso Vascular/metabolismo , Fosforilación , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglucemia/metabolismo
5.
J Biol Chem ; 298(12): 102701, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36395884

RESUMEN

The L-type Ca2+ channel CaV1.2 controls gene expression, cardiac contraction, and neuronal activity. Calmodulin (CaM) governs CaV1.2 open probability (Po) and Ca2+-dependent inactivation (CDI) but the mechanisms remain unclear. Here, we present electrophysiological data that identify a half Ca2+-saturated CaM species (Ca2/CaM) with Ca2+ bound solely at the third and fourth EF-hands (EF3 and EF4) under resting Ca2+ concentrations (50-100 nM) that constitutively preassociates with CaV1.2 to promote Po and CDI. We also present an NMR structure of a complex between the CaV1.2 IQ motif (residues 1644-1665) and Ca2/CaM12', a calmodulin mutant in which Ca2+ binding to EF1 and EF2 is completely disabled. We found that the CaM12' N-lobe does not interact with the IQ motif. The CaM12' C-lobe bound two Ca2+ ions and formed close contacts with IQ residues I1654 and Y1657. I1654A and Y1657D mutations impaired CaM binding, CDI, and Po, as did disabling Ca2+ binding to EF3 and EF4 in the CaM34 mutant when compared to WT CaM. Accordingly, a previously unappreciated Ca2/CaM species promotes CaV1.2 Po and CDI, identifying Ca2/CaM as an important mediator of Ca signaling.


Asunto(s)
Canales de Calcio Tipo L , Calmodulina , Calmodulina/metabolismo , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Unión Proteica , Mutación , Calcio/metabolismo
6.
Handb Exp Pharmacol ; 279: 41-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36598607

RESUMEN

Diabetes is a leading cause of disability and mortality worldwide. A major underlying factor in diabetes is the excessive glucose levels in the bloodstream (e.g., hyperglycemia). Vascular complications directly result from this metabolic abnormality, leading to disabling and life-threatening conditions. Dysfunction of vascular smooth muscle cells is a well-recognized factor mediating vascular complications during diabetic hyperglycemia. The function of vascular smooth muscle cells is exquisitely controlled by different ion channels. Among the ion channels, the L-type CaV1.2 channel plays a key role as it is the main Ca2+ entry pathway regulating vascular smooth muscle contractile state. The activity of CaV1.2 channels in vascular smooth muscle is altered by diabetic hyperglycemia, which may contribute to vascular complications. In this chapter, we summarize the current understanding of the regulation of CaV1.2 channels in vascular smooth muscle by different signaling pathways. We place special attention on the regulation of CaV1.2 channel activity in vascular smooth muscle by a newly uncovered AKAP5/P2Y11/AC5/PKA/CaV1.2 axis that is engaged during diabetic hyperglycemia. We further describe the pathophysiological implications of activation of this axis as it relates to myogenic tone and vascular reactivity and propose that this complex may be targeted for developing therapies to treat diabetic vascular complications.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Humanos , Hiperglucemia/metabolismo , Canales de Calcio Tipo L/metabolismo , Músculo Liso Vascular/metabolismo , Diabetes Mellitus/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo
7.
Circ Res ; 127(6): 796-810, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32507058

RESUMEN

RATIONALE: Cardiotoxic ß1 adrenergic receptor (ß1AR)-CaMKII (calmodulin-dependent kinase II) signaling is a major and critical feature associated with development of heart failure. SAP97 (synapse-associated protein 97) is a multifunctional scaffold protein that binds directly to the C-terminus of ß1AR and organizes a receptor signalosome. OBJECTIVE: We aim to elucidate the dynamics of ß1AR-SAP97 signalosome and its potential role in chronic cardiotoxic ß1AR-CaMKII signaling that contributes to development of heart failure. METHODS AND RESULTS: The integrity of cardiac ß1AR-SAP97 complex was examined in heart failure. Cardiac-specific deletion of SAP97 was developed to examine ß1AR signaling in aging mice, after chronic adrenergic stimulation, and in pressure overload hypertrophic heart failure. We show that the ß1AR-SAP97 signaling complex is reduced in heart failure. Cardiac-specific deletion of SAP97 yields an aging-dependent cardiomyopathy and exacerbates cardiac dysfunction induced by chronic adrenergic stimulation and pressure overload, which are associated with elevated CaMKII activity. Loss of SAP97 promotes PKA (protein kinase A)-dependent association of ß1AR with arrestin2 and CaMKII and turns on an Epac (exchange protein directly activated by cAMP)-dependent activation of CaMKII, which drives detrimental functional and structural remodeling in myocardium. Moreover, we have identified that GRK5 (G-protein receptor kinase-5) is necessary to promote agonist-induced dissociation of SAP97 from ß1AR. Cardiac deletion of GRK5 prevents adrenergic-induced dissociation of ß1AR-SAP97 complex and increases in CaMKII activity in hearts. CONCLUSIONS: These data reveal a critical role of SAP97 in maintaining the integrity of cardiac ß1AR signaling and a detrimental cardiac GRK5-CaMKII axis that can be potentially targeted in heart failure therapy. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Homólogo 1 de la Proteína Discs Large/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Receptores Adrenérgicos beta 1/metabolismo , Animales , Apoptosis , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Homólogo 1 de la Proteína Discs Large/genética , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Miocitos Cardíacos/patología , beta-Arrestina 1/metabolismo
8.
Cell Mol Life Sci ; 78(1): 31-61, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32594191

RESUMEN

Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.


Asunto(s)
Hiperglucemia/patología , Canales Iónicos/metabolismo , Músculo Liso Vascular/metabolismo , Animales , Canales de Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Endoteliales/metabolismo , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo
9.
Curr Top Membr ; 90: 65-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36368875

RESUMEN

Diabetic vasculopathy is a significant cause of morbidity and mortality in the diabetic population. Hyperglycemia, one of the central metabolic abnormalities in diabetes, has been associated with vascular dysfunction due to endothelial cell damage. However, studies also point toward vascular smooth muscle as a locus for hyperglycemia-induced vascular dysfunction. Emerging evidence implicates hyperglycemia-induced regulation of vascular L-type Ca2+ channels CaV1.2 as a potential mechanism for vascular dysfunction during diabetes. This chapter summarizes our current understanding of vascular CaV1.2 channels and their regulation during physiological and hyperglycemia/diabetes conditions. We will emphasize the role of CaV1.2 in vascular smooth muscle, the effects of elevated glucose on CaV1.2 function, and the mechanisms underlying its dysregulation in hyperglycemia and diabetes. We conclude by examining future directions and gaps in knowledge regarding CaV1.2 regulation in health and during diabetes.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Humanos , Miocitos del Músculo Liso/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/farmacología , Músculo Liso Vascular/fisiología , Diabetes Mellitus/metabolismo , Hiperglucemia/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1341-1355, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29959960

RESUMEN

L-type CaV1.2 channels are key regulators of gene expression, cell excitability and muscle contraction. CaV1.2 channels organize in clusters throughout the plasma membrane. This channel organization has been suggested to contribute to the concerted activation of adjacent CaV1.2 channels (e.g. cooperative gating). Here, we tested the hypothesis that dynamic intracellular and perimembrane trafficking of CaV1.2 channels is critical for formation and dissolution of functional channel clusters mediating cooperative gating. We found that CaV1.2 moves in vesicular structures of circular and tubular shape with diverse intracellular and submembrane trafficking patterns. Both microtubules and actin filaments are required for dynamic movement of CaV1.2 vesicles. These vesicles undergo constitutive homotypic fusion and fission events that sustain CaV1.2 clustering, channel activity and cooperative gating. Our study suggests that CaV1.2 clusters and activity can be modulated by diverse and unique intracellular and perimembrane vesicular dynamics to fine-tune Ca2+ signals.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Canales de Calcio Tipo L/metabolismo , Microtúbulos/metabolismo , Vesículas Transportadoras/metabolismo , Señalización del Calcio , Línea Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Activación del Canal Iónico , Transporte de Proteínas
12.
Microcirculation ; 25(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29044853

RESUMEN

Voltage-gated potassium (KV ) channels are key regulators of vascular smooth muscle contractility and vascular tone, and thus have major influence on the microcirculation. KV channels are important determinants of vascular smooth muscle membrane potential (Em ). A number of KV subunits are expressed in the plasma membrane of smooth muscle cells. Each subunit confers distinct kinetics and regulatory properties that allow for fine control of Em to orchestrate vascular tone. Modifications in KV subunit expression and/or channel activity can contribute to changes in vascular smooth muscle contractility in response to different stimuli and in diverse pathological conditions. Consistent with this, a number of studies suggest alterations in KV subunit expression and/or function as underlying contributing mechanisms for small resistance artery dysfunction in pathologies such as hypertension and metabolic disorders, including diabetes. Here, we review our current knowledge on the effects of these pathologies on KV channel expression and function in vascular smooth muscle cells, and the repercussions on (micro)vascular function.


Asunto(s)
Músculo Liso Vascular/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Humanos , Hipertensión/fisiopatología , Enfermedades Metabólicas/fisiopatología
13.
Circ Res ; 117(12): 1013-23, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26390880

RESUMEN

RATIONALE: Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. OBJECTIVE: To address and add clarity to this issue, we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. METHODS AND RESULTS: Using an image-based approach, we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and reactive oxygen species signaling microdomains in isolated arterial smooth muscle cells. Our single-cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels, and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. CONCLUSIONS: From these observations, we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Peróxido de Hidrógeno/metabolismo , Microdominios de Membrana/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Animales , Arteria Basilar/metabolismo , Arterias Cerebrales/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
14.
J Biol Chem ; 290(12): 7918-29, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25670860

RESUMEN

Enhanced arterial tone is a leading cause of vascular complications during diabetes. Voltage-gated K(+) (KV) channels are key regulators of vascular smooth muscle cells (VSMCs) contractility and arterial tone. Whether impaired KV channel function contributes to enhance arterial tone during diabetes is unclear. Here, we demonstrate a reduction in KV-mediated currents (IKv) in VSMCs from a high fat diet (HFD) mouse model of type 2 diabetes. In particular, IKv sensitive to stromatoxin (ScTx), a potent KV2 blocker, were selectively reduced in diabetic VSMCs. This was associated with decreased KV2-mediated regulation of arterial tone and suppression of the KV2.1 subunit mRNA and protein in VSMCs/arteries isolated from HFD mice. We identified protein kinase A anchoring protein 150 (AKAP150), via targeting of the phosphatase calcineurin (CaN), and the transcription factor nuclear factor of activated T-cells c3 (NFATc3) as required determinants of KV2.1 suppression during diabetes. Interestingly, substantial reduction in transcript levels for KV2.1 preceded down-regulation of large conductance Ca(2+)-activated K(+) (BKCa) channel ß1 subunits, which are ultimately suppressed in chronic hyperglycemia to a similar extent. Together, our study supports the concept that transcriptional suppression of KV2.1 by activation of the AKAP150-CaN/NFATc3 signaling axis contributes to enhanced arterial tone during diabetes.


Asunto(s)
Arterias/fisiología , Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo , Tono Muscular/fisiología , Canales de Potasio Shab/fisiología , Animales , Diabetes Mellitus Experimental/fisiopatología , Ratones , Ratones Endogámicos C57BL
15.
Circ Res ; 114(4): 607-15, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24323672

RESUMEN

RATIONALE: Increased contractility of arterial myocytes and enhanced vascular tone during hyperglycemia and diabetes mellitus may arise from impaired large-conductance Ca(2+)-activated K(+) (BKCa) channel function. The scaffolding protein A-kinase anchoring protein 150 (AKAP150) is a key regulator of calcineurin (CaN), a phosphatase known to modulate the expression of the regulatory BKCa ß1 subunit. Whether AKAP150 mediates BKCa channel suppression during hyperglycemia and diabetes mellitus is unknown. OBJECTIVE: To test the hypothesis that AKAP150-dependent CaN signaling mediates BKCa ß1 downregulation and impaired vascular BKCa channel function during hyperglycemia and diabetes mellitus. METHODS AND RESULTS: We found that AKAP150 is an important determinant of BKCa channel remodeling, CaN/nuclear factor of activated T-cells c3 (NFATc3) activation, and resistance artery constriction in hyperglycemic animals on high-fat diet. Genetic ablation of AKAP150 protected against these alterations, including augmented vasoconstriction. d-glucose-dependent suppression of BKCa channel ß1 subunits required Ca(2+) influx via voltage-gated L-type Ca(2+) channels and mobilization of a CaN/NFATc3 signaling pathway. Remarkably, high-fat diet mice expressing a mutant AKAP150 unable to anchor CaN resisted activation of NFATc3 and downregulation of BKCa ß1 subunits and attenuated high-fat diet-induced elevation in arterial blood pressure. CONCLUSIONS: Our results support a model whereby subcellular anchoring of CaN by AKAP150 is a key molecular determinant of vascular BKCa channel remodeling, which contributes to vasoconstriction during diabetes mellitus.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglucemia/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Vasoconstricción/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Grasas de la Dieta/farmacología , Técnicas de Sustitución del Gen , Hiperglucemia/genética , Hiperglucemia/fisiopatología , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Factores de Transcripción NFATC/metabolismo , Péptidos/farmacología , Transducción de Señal/fisiología , Toxinas Biológicas/farmacología , Vasoconstricción/efectos de los fármacos
16.
Biochim Biophys Acta ; 1833(7): 1657-64, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23124113

RESUMEN

Advances in imaging technology have allowed optical analysis of Ca(2+)-permeable ion channel activity. Here, we briefly review novel developments in optical recording of L-type voltage-dependent Ca(2+) channel (LTCC) function with high spatial and temporal resolution. Underlying principles supporting the use of total internal reflection fluorescence (TIRF) microscopy for optical measurement of channel activity and new functional characteristics of LTCCs revealed by application of this approach are discussed. Visualization of Ca(2+) influx through single LTCCs ("LTCC sparklets") has demonstrated that channel activity is regionally heterogeneous and that clustered channels are capable of operating in a cooperative, or "coupled" manner. In light of these findings, we describe a current molecular model for the local control of LTCC activity and coupled gating in physiological and pathological contexts. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Óptica y Fotónica , Animales , Humanos
17.
Circ Res ; 109(3): 255-61, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21700933

RESUMEN

RATIONALE: L-type Ca(2+) (Ca(V)1.2) channels shape the cardiac action potential waveform and are essential for excitation-contraction coupling in heart. A gain-of-function G406R mutation in a cytoplasmic loop of Ca(V)1.2 channels causes long QT syndrome 8 (LQT8), a disease also known as Timothy syndrome. However, the mechanisms by which this mutation enhances Ca(V)1.2-LQT8 currents and generates lethal arrhythmias are unclear. OBJECTIVE: To test the hypothesis that the anchoring protein AKAP150 modulates Ca(V)1.2-LQT8 channel gating in ventricular myocytes. METHODS AND RESULTS: Using a combination of molecular, imaging, and electrophysiological approaches, we discovered that Ca(V)1.2-LQT8 channels are abnormally coupled to AKAP150. A pathophysiological consequence of forming this aberrant ion channel-anchoring protein complex is enhanced Ca(V)1.2-LQT8 currents. This occurs through a mechanism whereby the anchoring protein functions like a subunit of Ca(V)1.2-LQT8 channels that stabilizes the open conformation and augments the probability of coordinated openings of these channels. Ablation of AKAP150 restores normal gating in Ca(V)1.2-LQT8 channels and protects the heart from arrhythmias. CONCLUSION: We propose that AKAP150-dependent changes in Ca(V)1.2-LQT8 channel gating may constitute a novel general mechanism for Ca(V)1.2-driven arrhythmias.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Canales de Calcio Tipo L/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/fisiología , Sindactilia/genética , Sindactilia/fisiopatología , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Potenciales de Acción/fisiología , Factores de Edad , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Trastorno Autístico , Calcio/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Activación del Canal Iónico/fisiología , Síndrome de QT Prolongado/metabolismo , Ratones , Ratones Transgénicos , Contracción Miocárdica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Sindactilia/metabolismo
18.
Circ Res ; 108(7): 837-46, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21311045

RESUMEN

RATIONALE: Mitochondrial dysfunction has been implicated in several cardiovascular diseases; however, the roles of mitochondrial oxidative stress and DNA damage in hypertensive cardiomyopathy are not well understood. OBJECTIVE: We evaluated the contribution of mitochondrial reactive oxygen species (ROS) to cardiac hypertrophy and failure by using genetic mouse models overexpressing catalase targeted to mitochondria and to peroxisomes. METHODS AND RESULTS: Angiotensin II increases mitochondrial ROS in cardiomyocytes, concomitant with increased mitochondrial protein carbonyls, mitochondrial DNA deletions, increased autophagy and signaling for mitochondrial biogenesis in hearts of angiotensin II-treated mice. The causal role of mitochondrial ROS in angiotensin II-induced cardiomyopathy is shown by the observation that mice that overexpress catalase targeted to mitochondria, but not mice that overexpress wild-type peroxisomal catalase, are resistant to cardiac hypertrophy, fibrosis and mitochondrial damage induced by angiotensin II, as well as heart failure induced by overexpression of Gαq. Furthermore, primary damage to mitochondrial DNA, induced by zidovudine administration or homozygous mutation of mitochondrial polymerase γ, is also shown to contribute directly to the development of cardiac hypertrophy, fibrosis and failure. CONCLUSIONS: These data indicate the critical role of mitochondrial ROS in cardiac hypertrophy and failure and support the potential use of mitochondrial-targeted antioxidants for prevention and treatment of hypertensive cardiomyopathy.


Asunto(s)
Angiotensina II/farmacología , Cardiomegalia/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Cardíacas/fisiología , Estrés Oxidativo/fisiología , Angiotensina II/efectos adversos , Animales , Cardiomegalia/inducido químicamente , Catalasa/genética , Catalasa/metabolismo , Daño del ADN/fisiología , ADN Mitocondrial/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Ratones , Ratones Transgénicos , Modelos Animales , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Zidovudina/farmacología
19.
Front Physiol ; 14: 1185744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362438

RESUMEN

Background: Secondhand smoke (SHS) is a significant risk factor for cardiovascular morbidity and mortality with an estimated 80% of SHS-related deaths attributed to cardiovascular causes. Public health measures and smoking bans have been successful both in reducing SHS exposure and improving cardiovascular outcomes in non-smokers. Soluble epoxide hydrolase (sEH) inhibitors have been shown to attenuate tobacco exposure-induced lung inflammatory responses, making them a promising target for mitigating SHS exposure-induced cardiovascular outcomes. Objectives: The objectives of this study were to determine 1) effects of environmentally relevant SHS exposure on cardiac autonomic function and blood pressure (BP) regulation and 2) whether prophylactic administration of an sEH inhibitor (TPPU) can reduce the adverse cardiovascular effects of SHS exposure. Methods: Male C57BL/6J mice (11 weeks old) implanted with BP/electrocardiogram (ECG) telemetry devices were exposed to filtered air or 3 mg/m3 of SHS (6 hr/d, 5 d/wk) for 12 weeks, followed by 4 weeks of recovery in filtered air. Some mice received TPPU in drinking water (15 mg/L) throughout SHS exposure. BP, heart rate (HR), HR variability (HRV), baroreflex sensitivity (BRS), and BP variability were determined monthly. Results: SHS exposure significantly decreased 1) short-term HRV by ∼20% (p < 0.05) within 4 weeks; 2) overall HRV with maximum effect at 12 weeks (-15%, p < 0.05); 3) pulse pressure (-8%, p < 0.05) as early as week 4; and 4) BRS with maximum effect at 12 weeks (-11%, p < 0.05). Four weeks of recovery following 12 weeks of SHS ameliorated all SHS-induced cardiovascular detriments. Importantly, mice exposed to TPPU in drinking water during SHS-related exposure were protected from SHS cardiovascular consequences. Discussion: The data suggest that 1) environmental relevant SHS exposure significantly alters cardiac autonomic function and BP regulation; 2) cardiovascular consequences from SHS can be reversed by discontinuing SHS exposure; and 3) inhibiting sEH can prevent SHS-induced cardiovascular consequences.

20.
Elife ; 122023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37338965

RESUMEN

The cellular mechanisms mediating norepinephrine (NE) functions in brain to result in behaviors are unknown. We identified the L-type Ca2+ channel (LTCC) CaV1.2 as a principal target for Gq-coupled α1-adrenergic receptors (ARs). α1AR signaling increased LTCC activity in hippocampal neurons. This regulation required protein kinase C (PKC)-mediated activation of the tyrosine kinases Pyk2 and, downstream, Src. Pyk2 and Src were associated with CaV1.2. In model neuroendocrine PC12 cells, stimulation of PKC induced tyrosine phosphorylation of CaV1.2, a modification abrogated by inhibition of Pyk2 and Src. Upregulation of LTCC activity by α1AR and formation of a signaling complex with PKC, Pyk2, and Src suggests that CaV1.2 is a central conduit for signaling by NE. Indeed, a form of hippocampal long-term potentiation (LTP) in young mice requires both the LTCC and α1AR stimulation. Inhibition of Pyk2 and Src blocked this LTP, indicating that enhancement of CaV1.2 activity via α1AR-Pyk2-Src signaling regulates synaptic strength.


Asunto(s)
Quinasa 2 de Adhesión Focal , Potenciación a Largo Plazo , Ratas , Ratones , Animales , Quinasa 2 de Adhesión Focal/metabolismo , Roedores , Fosforilación , Tirosina/metabolismo , Receptores Adrenérgicos/metabolismo , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA