Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genes Cells ; 25(12): 770-781, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33006802

RESUMEN

Zebrafish is a useful model to study vertebrate hematopoiesis, but lack of antibodies to zebrafish proteins has limited purification of hematopoietic cells. Here, we purified neutrophils from larval and adult zebrafish using the lectin Phaseolus vulgaris erythroagglutinin (PHA-E) and DRAQ5, a DNA-staining fluorescent dye. In adult kidney marrow, we purified neutrophil-like PHA-E4low DRAQ5low cells, which neutrophil-type granules. Specifically, at 96-hr post-fertilization, we sorted large-sized cells from larvae using forward scatter and found that they consisted of PHA-Elow DRAQ5low populations. These cells had myeloperoxidase activity, were Sudan Black B-positive and expressed high levels of neutrophil-specific (csf3r and mpx) mRNAs, all neutrophil characteristics. Using this method, we conducted functional analysis suggesting that zyxin (Zyx) plays a role in neutrophil generation in zebrafish larvae. Overall, PHA-E and DRAQ5-based flow cytometry serves as a tool to purify zebrafish neutrophils.


Asunto(s)
Citometría de Flujo/métodos , Hematopoyesis , Neutrófilos/citología , Cultivo Primario de Células/métodos , Animales , Células Cultivadas , Lectinas/metabolismo , Neutrófilos/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
2.
Molecules ; 26(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915948

RESUMEN

Hematopoietic stem and progenitor cell (HSPC) transplantation is a curative treatment of hematological disorders that has been utilized for several decades. Although umbilical cord blood (UCB) is a promising source of HSPCs, the low dose of HSPCs in these preparations limits their use, prompting need for ex vivo HSPC expansion. To establish a more efficient method to expand UCB HSPCs, we developed the bioactive peptide named SL-13R and cultured UCB HSPCs (CD34+ cells) with SL-13R in animal component-free medium containing a cytokine cocktail. Following 9 days of culture with SL-13R, the numbers of total cells, CD34+, CD38- cells, and hematopoietic stem cell (HSC)-enriched cells were significantly increased relative to control. Transplantation of cells cultured with SL-13R into immunodeficient NOD/Shi-scid/IL-2Rγ knockout mice confirmed that they possess long-term reconstitution and self-renewal ability. AHNAK, ANXA2, and PLEC all interact with SL-13R. Knockdown of these genes in UCB CD34+ cells resulted in reduced numbers of hematopoietic colonies relative to SL-13R-treated and non-knockdown controls. In summary, we have identified a novel bioactive peptide SL-13R promoting expansion of UCB CD34+ cells with long-term reconstitution and self-renewal ability, suggesting its clinical use in the future.


Asunto(s)
Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Péptidos/farmacología , Animales , Antígenos CD34/metabolismo , Biomarcadores , Proteínas Portadoras , Técnicas de Cultivo de Célula , Diferenciación Celular , Autorrenovación de las Células , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Ratones , Unión Proteica
3.
Cancer Sci ; 105(4): 402-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24521492

RESUMEN

Recent generation of induced pluripotent stem (iPSCs) has made a significant impact on the field of human regenerative medicine. Prior to the clinical application of iPSCs, testing of their safety and usefulness must be carried out using reliable animal models of various diseases. In order to generate iPSCs from common marmoset (CM; Callithrix jacchus), one of the most useful experimental animals, we have lentivirally transduced reprogramming factors, including POU5F1 (also known as OCT3/4), SOX2, KLF4, and c-MYC into CM fibroblasts. The cells formed round colonies expressing embryonic stem cell markers, however, they showed an abnormal karyotype denoted as 46, X, del(4q), +mar, and formed human dysgerminoma-like tumors in SCID mice, indicating that the transduction of reprogramming factors caused unexpected tumorigenesis of CM cells. Moreover, CM dysgerminoma-like tumors were highly sensitive to DNA-damaging agents, irradiation, and fibroblast growth factor receptor inhibitor, and their growth was dependent on c-MYC expression. These results indicate that DNA-damaging agents, irradiation, fibroblast growth factor receptor inhibitor, and c-MYC-targeted therapies might represent effective treatment strategies for unexpected tumors in patients receiving iPSC-based therapy.


Asunto(s)
Carcinogénesis/genética , Disgerminoma/terapia , Células Madre Pluripotentes Inducidas , Cariotipo Anormal , Animales , Callithrix , Disgerminoma/genética , Disgerminoma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Lentivirus , Ratones , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/biosíntesis , Factores de Transcripción SOXB1/genética , Transducción Genética
4.
Mol Ther ; 21(6): 1242-50, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23568261

RESUMEN

Induced pluripotent stem cells (iPSCs) can be generated from patients with specific diseases by the transduction of reprogramming factors and can be useful as a cell source for cell transplantation therapy for various diseases with impaired organs. However, the low efficiency of iPSC derived from somatic cells (0.01-0.1%) is one of the major problems in the field. The phosphoinositide 3-kinase (PI3K) pathway is thought to be important for self-renewal, proliferation, and maintenance of embryonic stem cells (ESCs), but the contribution of this pathway or its well-known negative regulator, phosphatase, and tensin homolog deleted on chromosome ten (Pten), to somatic cell reprogramming remains largely unknown. Here, we show that activation of the PI3K pathway by the Pten inhibitor, dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl)oxovanadate, improves the efficiency of germline-competent iPSC derivation from mouse somatic cells. This simple method provides a new approach for efficient generation of iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Fosfohidrolasa PTEN/genética , Transducción de Señal/efectos de los fármacos , Animales , Proliferación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Vectores Genéticos , Inmunohistoquímica , Cariotipificación , Masculino , Ratones , Ratones Endogámicos ICR , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas , Retroviridae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vanadatos/farmacología
5.
Nat Commun ; 15(1): 4941, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866781

RESUMEN

Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Microscopía Fluorescente , Animales , Ratones , Encéfalo/diagnóstico por imagen , Humanos , Microscopía Fluorescente/métodos , Microscopía Fluorescente/instrumentación , Imagenología Tridimensional/métodos , Línea Celular Tumoral
6.
J Biomed Biotechnol ; 2012: 903435, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22778557

RESUMEN

Hematopoietic stem cells (HSCs) have the capacity to self-renew as well as to differentiate into all blood cell types, and they can reconstitute hematopoiesis in recipients with bone marrow ablation. In addition, transplantation therapy using HSCs is widely performed for the treatment of various incurable diseases such as hematopoietic malignancies and congenital immunodeficiency disorders. For the safe and successful transplantation of HSCs, their genetic and epigenetic integrities need to be maintained properly. Therefore, understanding the molecular mechanisms that respond to various cellular stresses in HSCs is important. The tumor suppressor protein, p53, has been shown to play critical roles in maintenance of "cell integrity" under stress conditions by controlling its target genes that regulate cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. In this paper, we summarize recent reports that describe various biological functions of HSCs and discuss the roles of p53 associated with them.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Humanos
7.
Leukemia ; 33(12): 2805-2816, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31127149

RESUMEN

Imipridones constitute a novel class of antitumor agents. Here, we report that a second-generation imipridone, ONC212, possesses highly increased antitumor activity compared to the first-generation compound ONC201. In vitro studies using human acute myeloid leukemia (AML) cell lines, primary AML, and normal bone marrow (BM) samples demonstrate that ONC212 exerts prominent apoptogenic effects in AML, but not in normal BM cells, suggesting potential clinical utility. Imipridones putatively engage G protein-coupled receptors (GPCRs) and/or trigger an integrated stress response in hematopoietic tumor cells. Comprehensive GPCR screening identified ONC212 as activator of an orphan GPCR GPR132 and Gαq signaling, which functions as a tumor suppressor. Heterozygous knock-out of GPR132 decreased the antileukemic effects of ONC212. ONC212 induced apoptogenic effects through the induction of an integrated stress response, and reduced MCL-1 expression, a known resistance factor for BCL-2 inhibition by ABT-199. Oral administration of ONC212 inhibited AML growth in vivo and improved overall survival in xenografted mice. Moreover, ONC212 abrogated the engraftment capacity of patient-derived AML cells in an NSG PDX model, suggesting potential eradication of AML initiating cells, and was highly synergistic in combination with ABT-199. Collectively, our results suggest ONC212 as a novel therapeutic agent for AML.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/genética , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/metabolismo , Receptores Acoplados a Proteínas G/genética , Estrés Fisiológico , Activación Transcripcional , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación Leucémica de la Expresión Génica , Humanos , Imidazoles/química , Imidazoles/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Ratones , Estructura Molecular , Piridinas/química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Estrés Fisiológico/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cancer Cell ; 35(5): 721-737.e9, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31056398

RESUMEN

The mitochondrial caseinolytic protease P (ClpP) plays a central role in mitochondrial protein quality control by degrading misfolded proteins. Using genetic and chemical approaches, we showed that hyperactivation of the protease selectively kills cancer cells, independently of p53 status, by selective degradation of its respiratory chain protein substrates and disrupts mitochondrial structure and function, while it does not affect non-malignant cells. We identified imipridones as potent activators of ClpP. Through biochemical studies and crystallography, we show that imipridones bind ClpP non-covalently and induce proteolysis by diverse structural changes. Imipridones are presently in clinical trials. Our findings suggest a general concept of inducing cancer cell lethality through activation of mitochondrial proteolysis.


Asunto(s)
Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Mitocondrias/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Endopeptidasa Clp/química , Femenino , Células HCT116 , Células HEK293 , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Imidazoles , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Modelos Moleculares , Mutación Puntual , Conformación Proteica/efectos de los fármacos , Proteolisis , Piridinas , Pirimidinas , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Clin Ther ; 40(11): 1801-1806, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30396514

RESUMEN

Regenerative medicine mediated by the transplantation of somatic stem cells and functional cells derived from induced pluripotent stem cells has great potential in the treatment of currently incurable diseases and thus has attracted significant public attention. To put this into practice, several functional cell lines were developed and laws regarding regenerative medicine were put in force in Japan. In this report, we introduce recent efforts of a bioventure company with special attention to the case of Healios K.K.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Medicina Regenerativa , Humanos , Japón
10.
Clin Ther ; 40(11): 1813-1822, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30458928

RESUMEN

PURPOSE: Advances in methods designed to evaluate preclinical toxicity have not kept up with progress in regenerative medicine. Preclinical toxicity studies of regenerative therapies must be designed logically and should be flexible to accurately reflect toxicity of products under development. The purpose of this review is to discuss requirements of preclinical toxicity studies of this type developed in Japan. METHODS: We conducted MEDLINE and PubMed literature searches to identify recent reports relevant to regenerative medicine. Information regarding approved drugs and public announcements, including existing guidelines and guidance in Japan, was collected from the website of Japan's Ministry of Health, Labor and Welfare (https://www.mhlw.go.jp/index.html) and the Pharmaceuticals and Medical Devices Agency (https://www.pmda.go.jp/). FINDINGS: Four cell therapy products have been developed and approved in Japan so far. The principal preclinical toxicity data submitted to regulatory authorities in the Pharmaceuticals and Medical Devices Agency in Japan are summarized here. The potential for tumor formation, a major concern in such clinical applications, is assessed in 3 ways: tumor-forming capacity of the original cell, quantitation of residual pluripotent stem cells in the product, and the possibility that a tumor will form at the product's engraftment site. Although gene therapy and oncolytic virus products are under development, these types of products are not yet approved in Japan. Guidelines relevant to the development of these products are now being created based on existing guidelines and considerations established by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use. IMPLICATIONS: Because of cell tropism and heterologous immunity, animal species or strains useful for preclinical studies of regenerative therapies are often restricted. Nonetheless, preclinical toxicity studies must be designed to predict results relevant to humans.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Terapia Genética/efectos adversos , Medicina Regenerativa/métodos , Animales , Humanos , Japón
11.
Oncotarget ; 9(47): 28547-28560, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29983879

RESUMEN

Despite the development of the novel Bruton tyrosine kinase inhibitor ibrutinib, mantle cell lymphoma (MCL) remains an incurable B-cell non-Hodgkin lymphoma. BMI-1 is required for the self-renewal and maintenance of MCL-initiating stem cells. Upregulation of BMI-1 has been reported in MCL patients, especially in those with refractory/relapsed disease. We studied the effects of a novel small-molecule selective inhibitor of BMI1 expression, PTC596, in MCL cells. Eight MCL cell lines and patient-derived samples were exposed to PTC596. PTC596 induced mitochondrial apoptosis, as evidenced by loss of mitochondrial membrane potential, caspase-3 cleavage, BAX activation, and phosphatidylserine externalization. There was a positive correlation between baseline BMI-1 protein levels and PTC596-induced apoptosis. p53 status did not affect sensitivity to PTC596. PTC596 effectively decreased BMI-1-expressing and tumor-initiating side population MCL cells (IC50: 138 nM) compared with ibrutinib, which modestly decreased side population cells. Interestingly, PTC596, reported to target cancer stem cells, decreased MCL-1 expression levels and antagonized ibrutinib-induced increase in MCL-1 expression, leading to synergistic apoptosis induction in MCL cells. There are currently no drugs that specifically target cancer stem cell fractions, and a reduction in BMI-1 protein by PTC596 may offer a novel therapeutic strategy for MCL.

12.
Biores Open Access ; 5(1): 127-36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27257519

RESUMEN

Efficient gene transfer into human pluripotent stem cells (hPSCs) holds great promise for regenerative medicine and pharmaceutical development. In the past decade, various methods were developed for gene transfer into hPSCs; however, hPSCs form tightly packed colonies, making gene transfer difficult. In this study, we established a stable culture method of hPSCs at a single-cell state to reduce cell density and investigated gene transfection efficiency followed by gene editing efficiency. hPSCs cultured in a single-cell state were transfected using nonliposomal transfection reagents with plasmid DNA or mRNA encoding enhanced green fluorescent protein. We found that most cells (DNA > 90%; mRNA > 99%) were transfected without the loss of undifferentiated PSC marker expression or pluripotency. Moreover, we demonstrated an efficient gene editing method using transcription activator-like effector nucleases (TALENs) targeting the adenomatous polyposis coli (APC) gene. Our new method may improve hPSC gene transfer techniques, thus facilitating their use for human regenerative medicine.

13.
Exp Hematol ; 43(10): 901-911.e4, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26073521

RESUMEN

Hematopoietic stem/progenitor cells (HSPCs) derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have potential therapeutic applications in humans. To assess the safety and efficacy of ESC/iPSC-based therapies, reliable animal models are required prior to their clinical application. The common marmoset (CM) was recently found to be a useful nonhuman primate animal model for drug development and safety assessment. However, a method for the efficient hematopoietic differentiation of CM ESCs has not been established. In this study, we developed a novel and efficient method for differentiating CM ESCs into hematopoietic cells by transiently inhibiting the phosphoinositide 3-kinase (PI3K)-Protein kinase B (AKT) pathway, a critical pathway that maintains the undifferentiated state of CM ESCs during embryoid body (EB) formation. Compared with controls, transient inhibition of the P13K-AKT pathway resulted in a threefold increase in the proportion of enriched CD34⁺ cells (p < 0.001) and an increase in the number of hematopoietic colonies on day 8 of CM EB cultures. Moreover, number of blast colonies, number of hematopoietic progenitor cell populations of CD34⁺CD117⁺, CD34⁺CD45⁺, and CD43⁺CD45⁺ cells, and expression of hematopoietic genes were increased by transient inhibition of the PI3K-AKT pathway. We also demonstrated that the hematopoietic progenitor cell population was increased by inhibition of PI3K in a human system. Our novel and efficient ESC differentiation method might be useful for preclinical research on human hematopoietic disorders and may be efficiently translated to human ESC/iPSC-based regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Hematopoyesis/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antígenos CD/metabolismo , Callithrix , Línea Celular , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo
14.
FEBS Open Bio ; 4: 213-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24649403

RESUMEN

Common marmoset (CM) is widely recognized as a useful non-human primate for disease modeling and preclinical studies. Thus, embryonic stem cells (ESCs) derived from CM have potential as an appropriate cell source to test human regenerative medicine using human ESCs. CM ESCs have been established by us and other groups, and can be cultured in vitro. However, the growth factors and downstream pathways for self-renewal of CM ESCs are largely unknown. In this study, we found that basic fibroblast growth factor (bFGF) rather than leukemia inhibitory factor (LIF) promoted CM ESC self-renewal via the activation of phosphatidylinositol-3-kinase (PI3K)-protein kinase B (AKT) pathway on mouse embryonic fibroblast (MEF) feeders. Moreover, bFGF and transforming growth factor ß (TGFß) signaling pathways cooperatively maintained the undifferentiated state of CM ESCs under feeder-free condition. Our findings may improve the culture techniques of CM ESCs and facilitate their use as a preclinical experimental resource for human regenerative medicine.

15.
Mol Brain ; 7: 31, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24758191

RESUMEN

BACKGROUND: We previously performed systematic association studies of glutamate receptor gene family members with schizophrenia, and found positive associations of polymorphisms in the GRM3 (a gene of metabotropic glutamate receptor 3: mGluR3) with the disorder. Physiological roles of GRM3 in brain functions and its functional roles in the pathogenesis of schizophrenia remain to be resolved. RESULTS: We generated mGluR3 knockout (KO) mice and conducted comprehensive behavioral analyses. KO mice showed hyperactivity in the open field, light/dark transition, and 24-hour home cage monitoring tests, impaired reference memory for stressful events in the Porsolt forced swim test, impaired contextual memory in cued and contextual fear conditioning test, and impaired working memory in the T-Maze forced alternation task test. Hyperactivity and impaired working memory are known as endophenotypes of schizophrenia. We examined long-term synaptic plasticity by assessing long-term potentiation (LTP) in the CA1 region in the hippocampi of KO and wild-type (WT) mice. We observed no differences in the amplitude of LTP between the two genotypes, suggesting that mGluR3 is not essential for LTP in the CA1 region of the mouse hippocampus. As hyperactivity is typically associated with increased dopaminergic transmission, we performed in vivo microdialysis measurements of extracellular dopamine in the nucleus accumbens of KO and WT mice. We observed enhancements in the methamphetamine (MAP)-induced release of dopamine in KO mice. CONCLUSIONS: These results demonstrate that a disturbance in the glutamate-dopamine interaction may be involved in the pathophysiology of schizophrenia-like behavior, such as hyperactivity in mGluR3 KO mice.


Asunto(s)
Conducta Animal , Endofenotipos/metabolismo , Receptores de Glutamato Metabotrópico/deficiencia , Esquizofrenia/patología , Animales , Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Dopamina/metabolismo , Miedo/fisiología , Marcha/fisiología , Hipocampo/fisiopatología , Inhibición Psicológica , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Núcleo Accumbens/fisiopatología , Receptores de Glutamato Metabotrópico/metabolismo , Reflejo de Sobresalto/fisiología , Esquizofrenia/fisiopatología , Conducta Social , Natación , Análisis y Desempeño de Tareas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA