Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38193557

RESUMEN

The dynamics of viscoelastic fluids are governed by a memory function, essential yet challenging to compute, especially when diffusion faces boundary restrictions. We propose a computational method that captures memory effects by analyzing the time-correlation function of the pressure tensor, a viscosity indicator, through the Stokes-Einstein equation's analytic continuation into the Laplace domain. We integrate this equation with molecular dynamics simulations to derive necessary parameters. Our approach computes nuclear magnetic resonance (NMR) line shapes using a generalized diffusion coefficient, accounting for temperature and confinement geometry. This method directly links the memory function with thermal transport parameters, facilitating accurate NMR signal computation for non-Markovian fluids in confined geometries.

2.
J Chem Phys ; 159(12)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-38127390

RESUMEN

The temperature dependence of the nuclear free induction decay in the presence of a magnetic-field gradient was found to exhibit motional narrowing in gases upon heating, a behavior that is opposite to that observed in liquids. This has led to the revision of the theoretical framework to include a more detailed description of particle trajectories since decoherence mechanisms depend on histories. In the case of free diffusion and single components, the new model yields the correct temperature trends. The inclusion of boundaries in the current formalism is not straightforward. We present a hybrid SDE-MD (stochastic differential equation - molecular dynamics) approach whereby MD is used to compute an effective viscosity and the latter is fed to the SDE to predict the line shape. The theory is in agreement with the experiments. This two-scale approach, which bridges the gap between short (molecular collisions) and long (nuclear induction) timescales, paves the way for the modeling of complex environments with boundaries, mixtures of chemical species, and intermolecular potentials.

3.
Phys Rev Lett ; 127(8): 080401, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477434

RESUMEN

We propose and experimentally measure an entropy that quantifies the volume of correlations among qubits. The experiment is carried out on a nearly isolated quantum system composed of a central spin coupled and initially uncorrelated with 15 other spins. Because of the spin-spin interactions, information flows from the central spin to the surrounding ones forming clusters of multispin correlations that grow in time. We design a nuclear magnetic resonance experiment that directly measures the amplitudes of the multispin correlations and use them to compute the evolution of what we call correlation Rényi entropy. This entropy keeps growing even after the equilibration of the entanglement entropy. We also analyze how the saturation point and the timescale for the equilibration of the correlation Rényi entropy depend on the system size.

4.
Solid State Nucl Magn Reson ; 49-50: 26-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23266020

RESUMEN

The proton MAS NMR spectra in MCM-41 at low hydration levels (less than hydration amounting to one water molecule per surface hydroxyl group) show complex proton resonance peak structures, with hydroxyl proton resonances seen in dry MCM-41 disappearing as water is introduced into the pores and new peaks appearing, representing water and hydrated silanol groups. Surface hydroxyl group-water molecule chemical exchange and chemical shift averaging brought about by a water molecule visiting different surface hydrogen bonding sites have been proposed as possible causes for the observed spectral changes. In this report a simple model based on chemical shift averaging, due to the making and breaking of hydrogen bonds as water molecules move on the MCM-41 surface, is shown to fully reproduce the NMR spectra, both as a function of hydration and temperature. Surface proton-water proton chemical exchange is not required in this model at low hydration levels.

5.
Cell Tissue Bank ; 10(3): 247-52, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19037751

RESUMEN

Iranian Tissue Bank prepares a wide range of human tissue homografts such as; heart valve, bone, skin, amniotic membrane and other tissues for different clinical applications. The purpose of this study was to determine the seroprevalence of HTLV in tissue donors. About 1,548 tissue donors were studied during a 5-years period by ELISA assays. HTLV(1,2)-antibodies were tested for all of donors with other tests upon American Association of Tissue Banks (AATB) standards. About 25 (1.61%) out of 1,548 tissue donors were HTLV positive that 17 donors were male and 8 were female (female/male ratio was approximately 47%). Regarding to the prevalence of HTLV among tissue donors and importance of cell and tissue safety and quality assurance, we recommend that all blood, cell and tissue banks should be involved both routine serological methods and other complementary tests such as polymerase chain reaction (PCR) for diagnosis of HTLV.


Asunto(s)
Anticuerpos Anti-HTLV-I/sangre , Anticuerpos Anti-HTLV-II/sangre , Virus Linfotrópico T Tipo 1 Humano/aislamiento & purificación , Virus Linfotrópico T Tipo 2 Humano/aislamiento & purificación , Bancos de Tejidos/normas , Donantes de Tejidos , Adulto , Femenino , Virus Linfotrópico T Tipo 1 Humano/inmunología , Virus Linfotrópico T Tipo 2 Humano/inmunología , Humanos , Irán , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA