RESUMEN
Masking is often assessed by quantifying changes, due to increasing noise, to an animal's communication or listening range. While the methods used to measure communication or listening ranges are functionally similar if used for vocalizations, they differ in their approaches: communication range is focused on the sender's call, while the listening range is centered on the listener's ability to perceive any signal. How these two methods differ in their use and output is important for management recommendations. Therefore it was investigated how these two methods may alter the conclusions of masking assessments based on Atlantic cod calls in the presence of a commercial air gun array. The two methods diverged with increasing distance from the masking noise source with maximum effects lasting longer between air gun pulses in terms of communication range than listening range. Reductions in the cod's communication ranges were sensitive to fluctuations in the call's source level. That instability was not observed for the listening range. Overall, changes to the cod's communication range were more conservative but very sensitive to the call source level. A high level of confidence in the call is therefore required, while confidence in the receiver's audiogram and soundscape is required for the listening range method.
Asunto(s)
Ruido , Enmascaramiento Perceptual , Animales , Percepción Auditiva , Ruido/efectos adversosRESUMEN
During breeding season, male harbor seals (Phoca vitulina) produce underwater calls used in sexual competition and advertisement. Call characteristics vary among populations, and within-population differences are thought to represent individual variation. However, vocalizations have not been described for several populations of this widely-distributed and genetically diverse species. This study describes the vocal repertoire of harbor seals from British Columbia, Canada. Underwater recordings were made near Hornby Island during the summer of 2014 using a single hydrophone. A wide variability was detected in breeding vocalizations within this single breeding site. Four candidate call types were identified, containing six subtypes. Linear discriminant analysis showed 88% agreement with subjective classification of call types, and 74% agreement for call subtypes. Classification tree analysis gave a 92% agreement with candidate call types, with all splits made on the basis of call duration. Differences in duration may have reflected individual differences among seals. This study suggests that the vocal repertoire of harbor seals in this area comprises a vocal continuum rather than discrete call types. Further work with the ability to localize calls may help to determine whether this complexity represents variability due to propagation conditions, animal orientation, or differences among individual seals.
Asunto(s)
Phoca/fisiología , Vocalización Animal/fisiología , Animales , Conducta Apetitiva/fisiología , Cruzamiento , Canadá , Masculino , Estaciones del Año , Conducta Sexual Animal/fisiología , Vocalización Animal/clasificaciónRESUMEN
Underwater noise pollution is a recognized threat to marine life. In British Columbia, Canada, Pacific rockfish (Sebastes spp.) were historically overfished, prompting the establishment of Rockfish Conservation Areas (RCAs). However, there are no restrictions prohibiting vessel transits in RCAs. We hypothesized that RCAs do not protect rockfish from sub-lethal harm from noise. We compared noise levels at three RCAs with adjacent unprotected reference sites from August 2018-June 2019. While RCAs had lower levels of noise overall than reference sites, this trend was inconsistent; some RCA sites had higher levels of noise during certain time periods than non-RCA sites. A vessel noise detector was the best predictor of noise level over three frequency bands (20-100 Hz, 100-1000 Hz, 1-10 kHz), and predicted sound levels which could mask rockfish communication. We conclude that RCAs do not reliably protect rockfish from noise pollution, and recommend further study into potential impacts on stock recovery.