Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Transl Med ; 21(1): 577, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641066

RESUMEN

BACKGROUND: With metabolic alterations of the tumor microenvironment (TME) contributing to cancer progression, metastatic spread and response to targeted therapies, non-invasive and repetitive imaging of tumor metabolism is of major importance. The purpose of this study was to investigate whether multiparametric chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) allows to detect differences in the metabolic profiles of the TME in murine breast cancer models with divergent degrees of malignancy and to assess their response to immunotherapy. METHODS: Tumor characteristics of highly malignant 4T1 and low malignant 67NR murine breast cancer models were investigated, and their changes during tumor progression and immune checkpoint inhibitor (ICI) treatment were evaluated. For simultaneous analysis of different metabolites, multiparametric CEST-MRI with calculation of asymmetric magnetization transfer ratio (MTRasym) at 1.2 to 2.0 ppm for glucose-weighted, 2.0 ppm for creatine-weighted and 3.2 to 3.6 ppm for amide proton transfer- (APT-) weighted CEST contrast was conducted. Ex vivo validation of MRI results was achieved by 1H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization mass spectrometry imaging with laser postionization and immunohistochemistry. RESULTS: During tumor progression, the two tumor models showed divergent trends for all examined CEST contrasts: While glucose- and APT-weighted CEST contrast decreased and creatine-weighted CEST contrast increased over time in the 4T1 model, 67NR tumors exhibited increased glucose- and APT-weighted CEST contrast during disease progression, accompanied by decreased creatine-weighted CEST contrast. Already three days after treatment initiation, CEST contrasts captured response to ICI therapy in both tumor models. CONCLUSION: Multiparametric CEST-MRI enables non-invasive assessment of metabolic signatures of the TME, allowing both for estimation of the degree of tumor malignancy and for assessment of early response to immune checkpoint inhibition.


Asunto(s)
Creatina , Neoplasias , Animales , Ratones , Inmunoterapia , Imagen por Resonancia Magnética , Amidas , Glucosa , Inhibidores de Puntos de Control Inmunológico
2.
J Immunol ; 202(5): 1559-1572, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692210

RESUMEN

The neuropilin-1 (NRP1)-MET signaling axis regulates the motility of individual endothelial cells (ECs). It is unknown how this signaling pathway affects the endothelial barrier in coherent ECs forming a tight monolayer. We hypothesized that it is involved both in modulation of the endothelial barrier and in EC activation. To investigate the role of NRP1-MET signaling in inflammatory processes (e.g., systemic inflammatory response syndrome [SIRS] or snakebite-induced SIRS-like conditions), we employed the C-type lectin-related protein rhodocetin-αß (RCαß) as a specific trigger of this signal axis in ECs in vitro. In coherent HUVECs, RCαß reinforced the actin cytoskeleton and increased cell stiffness, thus favoring vascular endothelial cadherin-mediated transmission of intercellular forces. Increased cell stiffness was associated with enhanced activation of RhoA and nuclear translocation of NF-κB. Simultaneously, RCαß-triggered signaling via the NRP1-MET axis increased EC monolayer permeability, induced transcription of proinflammatory genes such as ICAM-1 and, consequently, leukocyte tethering. The RCαß-induced transcriptome differed from that induced by hepatocyte growth factor, although in both cases the same tyrosine kinase, MET, was involved. This was due to RCαß-mediated recruitment of the MET coreceptor NRP1 and additional Rho-mediated activation of the actomyosin system. RCαß induced similar transcriptional and cellular changes if external shear forces were applied. These data highlight the modulatory role of NRP1 as MET coreceptor, and they explain how some snake venoms induce SIRS-like conditions. Additionally, this study demonstrates that inflammatory activation of coherent ECs is triggered by converging signals that are induced by NRP1-MET signaling and influenced by intercellular forces.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/inmunología , Inflamación/inmunología , Neuropilina-1/inmunología , Proteínas Proto-Oncogénicas c-met/inmunología , Transducción de Señal/inmunología , Células Cultivadas , Humanos
3.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008569

RESUMEN

Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.


Asunto(s)
Metaloproteinasas de la Matriz/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral/fisiología , Animales , Biomarcadores de Tumor/metabolismo , Comunicación Celular/fisiología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Invasividad Neoplásica/patología , Proteolisis
5.
PLoS Biol ; 15(7): e2001492, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28704364

RESUMEN

The collagen binding integrin α2ß1 plays a crucial role in hemostasis, fibrosis, and cancer progression amongst others. It is specifically inhibited by rhodocetin (RC), a C-type lectin-related protein (CLRP) found in Malayan pit viper (Calloselasma rhodostoma) venom. The structure of RC alone reveals a heterotetramer arranged as an αß and γδ subunit in a cruciform shape. RC specifically binds to the collagen binding A-domain of the integrin α2 subunit, thereby blocking collagen-induced platelet aggregation. However, until now, the molecular basis for this interaction has remained unclear. Here, we present the molecular structure of the RCγδ-α2A complex solved to 3.0 Å resolution. Our findings show that RC undergoes a dramatic structural reorganization upon binding to α2ß1 integrin. Besides the release of the nonbinding RCαß tandem, the RCγ subunit interacts with loop 2 of the α2A domain as result of a dramatic conformational change. The RCδ subunit contacts the integrin α2A domain in the "closed" conformation through its helix C. Combined with epitope-mapped antibodies, conformationally locked α2A domain mutants, point mutations within the α2A loop 2, and chemical modifications of the purified toxin protein, this molecular structure of RCγδ-α2A complex explains the inhibitory mechanism and specificity of RC for α2ß1 integrin.


Asunto(s)
Venenos de Crotálidos/química , Integrina alfa2beta1/química , Venenos de Crotálidos/farmacología , Cristalografía por Rayos X , Integrina alfa2beta1/antagonistas & inhibidores , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína
6.
Adv Exp Med Biol ; 1223: 31-67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32030684

RESUMEN

Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.


Asunto(s)
Neoplasias/metabolismo , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Microambiente Tumoral , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica , Transducción de Señal
7.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379400

RESUMEN

The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.


Asunto(s)
Uniones Célula-Matriz/metabolismo , Integrinas/metabolismo , Microambiente Tumoral , Animales , Matriz Extracelular/metabolismo , Humanos , Metaloproteinasas de la Matriz/metabolismo , Neoplasias/metabolismo , Neoplasias/patología
8.
J Cell Sci ; 130(19): 3261-3271, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28778988

RESUMEN

Proteolytic processing of cell-surface-bound ligands, called shedding, is a fundamental system to control cell-cell signaling. Yet, our understanding of how shedding is regulated is still incomplete. One way to increase the processing of dual-lipidated membrane-associated Sonic hedgehog (Shh) is to increase the density of substrate and sheddase. This releases and also activates Shh by the removal of lipidated inhibitory N-terminal peptides from Shh receptor binding sites. Shh release and activation is enhanced by Scube2 [signal sequence, cubulin (CUB) domain, epidermal growth factor (EGF)-like protein 2], raising the question of how this is achieved. Here, we show that Scube2 EGF domains are responsible for specific proteolysis of the inhibitory Shh N-terminus, and that CUB domains complete the process by reversing steric masking of this peptide. Steric masking, in turn, depends on Ca2+ occupancy of Shh ectodomains, unveiling a new mode of shedding regulation at the substrate level. Importantly, Scube2 uncouples processing of Shh peptides from their lipid-mediated juxtamembrane positioning, and thereby explains the long-standing conundrum that N-terminally unlipidated Shh shows patterning activity in Scube2-expressing vertebrates, but not in invertebrates that lack Scube orthologs.


Asunto(s)
Calcio/metabolismo , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Dominios Proteicos
9.
Int J Mol Sci ; 20(3)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717262

RESUMEN

Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.


Asunto(s)
Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neovascularización Patológica/genética , Neuropilina-1/genética , Neuropilina-2/genética , Animales , Sitios de Unión , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Células Endoteliales/patología , Humanos , Ligandos , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neuropilina-1/química , Neuropilina-1/metabolismo , Neuropilina-2/química , Neuropilina-2/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Semaforinas/genética , Semaforinas/metabolismo , Transducción de Señal , Microambiente Tumoral/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Biochim Biophys Acta ; 1860(3): 542-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26723171

RESUMEN

BACKGROUND: Viperid snake venoms contain active components that interfere with hemostasis. We report a new P-I class snake venom metalloproteinase (SVMP), barnettlysin-I (Bar-I), isolated from the venom of Bothrops barnetti and evaluated its fibrinolytic and antithrombotic potential. METHODS: Bar-I was purified using a combination of molecular exclusion and cation-exchange chromatographies. We describe some biochemical features of Bar-I associated with its effects on hemostasis and platelet function. RESULTS: Bar-I is a 23.386 kDa single-chain polypeptide with pI of 6.7. Its sequence (202 residues) shows high homology to other members of the SVMPs. The enzymatic activity on dimethylcasein (DMC) is inhibited by metalloproteinase inhibitors e.g. EDTA, and by α2-macroglobulin. Bar-I degrades fibrin and fibrinogen dose- and time-dependently by cleaving their α-chains. Furthermore, it hydrolyses plasma fibronectin but not laminin nor collagen type I. In vitro Bar-I dissolves fibrin clots made either from purified fibrinogen or from whole blood. In contrast to many other P-I SVMPs, Bar-I is devoid of hemorrhagic activity. Also, Bar-I dose- and time-dependently inhibits aggregation of washed human platelets induced by vWF plus ristocetin and collagen (IC50=1.3 and 3.2 µM, respectively), presumably Bar-I cleaves both vWF and GPIb. Thus, it effectively inhibits vWF-induced platelet aggregation. Moreover, this proteinase cleaves the collagen-binding α2-A domain (160 kDa) of α2ß1-integrin. This explains why it additionally inhibits collagen-induced platelet activation. CONCLUSION: A non-hemorrhagic but fibrinolytic metalloproteinase dissolves fibrin clots in vitro and impairs platelet function. GENERAL SIGNIFICANCE: This study provides new opportunities for drug development of a fibrinolytic agent with antithrombotic effect.


Asunto(s)
Bothrops , Venenos de Crotálidos/enzimología , Fibrinolíticos/farmacología , Metaloproteasas/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Secuencia de Aminoácidos , Animales , Fibrinolíticos/química , Integrina alfa2beta1/metabolismo , Metaloproteasas/aislamiento & purificación , Datos de Secuencia Molecular , Inhibidores de Agregación Plaquetaria/química , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
11.
Am J Pathol ; 186(11): 3011-3027, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27639165

RESUMEN

Integrins are transmembrane receptors composed of one α subunit and one ß subunit and are involved in cellular growth, differentiation, and apoptosis. The collagen-binding integrins α1ß1 and α2ß1 have been shown to regulate wound and tumor vascularization by different mechanisms. In this study, we assessed wound and tumor vascularization in mice with genetic ablation of both integrin subunits α1 and α2, which resulted in loss of integrins α1ß1 and α2ß1. Wound angiogenesis was investigated in excisional wounds that were inflicted on the back skin of control and mice lacking integrin α1ß1 and α2ß1. Mutant mice displayed reduced wound angiogenesis, which correlated with decreased macrophage numbers at 3 and 7 days after injury, and showed significantly attenuated vascularization of sponge implants. Angiogenesis induced by tumors arising from intradermal injection of B16 F1 melanoma cells was also reduced in comparison to controls 7 days after injection. This reduction in angiogenesis correlated with increased levels and activity of circulating matrix metalloproteinase 9 and elevated angiostatin levels in plasma of mutant mice, which reduced endothelial cell proliferation. Ex vivo mutant aortic ring explants developed significantly fewer and thinner aortic sprouts with fewer branch points than controls because of impaired endothelial cell proliferation. In conclusion, the loss of integrins α1ß1 and α2ß1 in mice results in reduced wound and tumor angiogenesis by cell-autonomous and extrinsic mechanisms.


Asunto(s)
Integrina alfa1beta1/metabolismo , Integrina alfa2beta1/metabolismo , Neoplasias/irrigación sanguínea , Cicatrización de Heridas/fisiología , Heridas y Lesiones/patología , Animales , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Integrina alfa1beta1/genética , Integrina alfa2beta1/genética , Melanoma/irrigación sanguínea , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/etiología , Neoplasias/patología , Neovascularización Patológica , Piel/irrigación sanguínea , Piel/lesiones , Piel/metabolismo , Piel/patología , Neoplasias Cutáneas/irrigación sanguínea , Heridas y Lesiones/etiología
12.
Int J Mol Sci ; 18(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112161

RESUMEN

After oncogenic transformation, tumor cells rewire their metabolism to obtain sufficient energy and biochemical building blocks for cell proliferation, even under hypoxic conditions. Glucose and glutamine become their major limiting nutritional demands. Instead of being autonomous, tumor cells change their immediate environment not only by their metabolites but also by mediators, such as juxtacrine cell contacts, chemokines and other cytokines. Thus, the tumor cells shape their microenvironment as well as induce resident cells, such as fibroblasts and endothelial cells (ECs), to support them. Fibroblasts differentiate into cancer-associated fibroblasts (CAFs), which produce a qualitatively and quantitatively different extracellular matrix (ECM). By their contractile power, they exert tensile forces onto this ECM, leading to increased intratumoral pressure. Moreover, along with enhanced cross-linkage of the ECM components, CAFs thus stiffen the ECM. Attracted by tumor cell- and CAF-secreted vascular endothelial growth factor (VEGF), ECs sprout from pre-existing blood vessels during tumor-induced angiogenesis. Tumor vessels are distinct from EC-lined vessels, because tumor cells integrate into the endothelium or even mimic and replace it in vasculogenic mimicry (VM) vessels. Not only the VM vessels but also the characteristically malformed EC-lined tumor vessels are typical for tumor tissue and may represent promising targets in cancer therapy.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Neovascularización Patológica , Microambiente Tumoral/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 33(3): 544-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23288161

RESUMEN

OBJECTIVE: The snake venom component rhodocetin-αß (RCαß) stimulates endothelial cell motility in an α2ß1 integrin-independent manner. We aimed to elucidate its cellular and molecular mechanisms. METHODS AND RESULTS: We identified neuropilin-1 (Nrp1) as a novel target of RCαß by protein-chemical methods. RCαß and vascular endothelial growth factor (VEGF)-A avidly bind to Nrp1. Instead of acting as VEGF receptor 2 coreceptor, Nrp1 associates upon RCαß treatment with cMet. Furthermore, cell-based ELISAs and kinase inhibitor studies showed that RCαß induces phosphorylation of tyrosines 1234/1235 [corrected] and thus activation of cMet. Consequently, paxillin is phosphorylated at Y31, which is redistributed from streak-like focal adhesions to spot-like focal contacts at the cell perimeter, along with α2ß1 integrin, thereby regulating cell-matrix interactions. Cortactin is abundant in the cell perimeter, where it is involved in the branching of the cortical actin network of lamellipodia, whereas tensile force-bearing actin stress fibers radiating from focal adhesions disappear together with zyxin, a focal adhesion marker, on RCαß treatment. CONCLUSIONS: Our data demonstrate that (1) Nrp1 is a novel target for venom components, such as RCαß; (2) Nrp1 coupled to cMet regulates the type of cell-matrix interactions in a manner involving paxillin phosphorylation; and (3) altered cell-matrix interactions determine endothelial cell migration and cellular force management.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Uniones Célula-Matriz/efectos de los fármacos , Venenos de Crotálidos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neuropilina-1/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Unión Competitiva , Uniones Célula-Matriz/metabolismo , Células Cultivadas , Cortactina/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Ensayo de Inmunoadsorción Enzimática , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrina alfa2beta1/metabolismo , Paxillin/metabolismo , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Seudópodos/metabolismo , Transducción de Señal/efectos de los fármacos , Fibras de Estrés/metabolismo , Tirosina , Factor A de Crecimiento Endotelial Vascular/metabolismo , Zixina/metabolismo
14.
Toxicon ; 225: 107058, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36806336

RESUMEN

The receptor protein CLEC-2 on platelet membranes is the target of the endogenous ligand podoplanin found on cancer cells and of rhodocytin, a snake venom component of the Malayan pit viper Calloselasma rhodostoma. Ligand binding results in platelet activation, increased blood coagulation and thrombosis. In an effort to isolate rhodocytin, we have purified CLEC-2 as bait from E. coli. Affinity captured rhodocytin interacted with mammalian CLEC-2 and stimulated platelet aggregation in a dose dependent manner.


Asunto(s)
Agkistrodon , Agregación Plaquetaria , Animales , Ligandos , Escherichia coli/metabolismo , Venenos de Víboras/farmacología , Lectinas Tipo C/metabolismo , Mamíferos/metabolismo
15.
Nat Commun ; 14(1): 6292, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813868

RESUMEN

E-cadherin-based cell-cell adhesions are dynamically and locally regulated in many essential processes, including embryogenesis, wound healing and tissue organization, with dysregulation manifesting as tumorigenesis and metastasis. However, the lack of tools that would provide control of the high spatiotemporal precision observed with E-cadherin adhesions hampers investigation of the underlying mechanisms. Here, we present an optogenetic tool, opto-E-cadherin, that allows reversible control of E-cadherin-mediated cell-cell adhesions with blue light. With opto-E-cadherin, functionally essential calcium binding is photoregulated such that cells expressing opto-E-cadherin at their surface adhere to each other in the dark but not upon illumination. Consequently, opto-E-cadherin provides remote control over multicellular aggregation, E-cadherin-associated intracellular signalling and F-actin organization in 2D and 3D cell cultures. Opto-E-cadherin also allows switching of multicellular behaviour between single and collective cell migration, as well as of cell invasiveness in vitro and in vivo. Overall, opto-E-cadherin is a powerful optogenetic tool capable of controlling cell-cell adhesions at the molecular, cellular and behavioural level that opens up perspectives for the study of dynamics and spatiotemporal control of E-cadherin in biological processes.


Asunto(s)
Actinas , Cadherinas , Adhesión Celular/fisiología , Cadherinas/genética , Cadherinas/metabolismo , Actinas/metabolismo , Movimiento Celular , Citoesqueleto de Actina/metabolismo
16.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36918222

RESUMEN

BACKGROUND: The inflammatory tumor microenvironment (TME) is formed by various immune cells, being closely associated with tumorigenesis. Especially, the interaction between tumor-infiltrating T-cells and macrophages has a crucial impact on tumor progression and metastatic spread. The purpose of this study was to investigate whether oscillating-gradient diffusion-weighted MRI (OGSE-DWI) enables a cell size-based discrimination between different cell populations of the TME. METHODS: Sine-shaped OGSE-DWI was combined with the Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED) approach to measure microscale diffusion distances, here relating to cell sizes. The accuracy of IMPULSED-derived cell radii was evaluated using in vitro spheroid models, consisting of either pure cancer cells, macrophages, or T-cells. Subsequently, in vivo experiments aimed to assess changes within the TME and its specific immune cell composition in syngeneic murine breast cancer models with divergent degrees of malignancy (4T1, 67NR) during tumor progression, clodronate liposome-mediated depletion of macrophages, and immune checkpoint inhibitor (ICI) treatment. Ex vivo analysis of IMPULSED-derived cell radii was conducted by immunohistochemical wheat germ agglutinin staining of cell membranes, while intratumoral immune cell composition was analyzed by CD3 and F4/80 co-staining. RESULTS: OGSE-DWI detected mean cell radii of 8.8±1.3 µm for 4T1, 8.2±1.4 µm for 67NR, 13.0±1.7 for macrophage, and 3.8±1.8 µm for T-cell spheroids. While T-cell infiltration during progression of 4T1 tumors was observed by decreasing mean cell radii from 9.7±1.0 to 5.0±1.5 µm, increasing amount of intratumoral macrophages during progression of 67NR tumors resulted in increasing mean cell radii from 8.9±1.2 to 12.5±1.1 µm. After macrophage depletion, mean cell radii decreased from 6.3±1.7 to 4.4±0.5 µm. T-cell infiltration after ICI treatment was captured by decreasing mean cell radii in both tumor models, with more pronounced effects in the 67NR tumor model. CONCLUSIONS: OGSE-DWI provides a versatile tool for non-invasive profiling of the inflammatory TME by assessing the dominating cell type T-cells or macrophages.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Ratones , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Linfocitos T , Macrófagos
17.
J Biol Chem ; 286(31): 27804-13, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21652699

RESUMEN

Cellular receptors for collagens belong to the family of ß(1) integrins. In the epidermis, integrin α(2)ß(1) is the only collagen-binding integrin present. Its expression is restricted to basal keratinocytes with uniform distribution on the cell surface of those cells. Although α(2)ß(1) receptors localized at the basal surface interact with basement membrane proteins collagen IV and laminin 111 and 332, no interaction partners have been reported for these integrin molecules at the lateral and apical membranes of basal keratinocytes. Solid phase binding and surface plasmon resonance spectroscopy demonstrate that collagen XXIII, a member of the transmembrane collagens, directly interacts with integrin α(2)ß(1) in an ion- and conformation-dependent manner. The two proteins co-localize on the surface of basal keratinocytes. Furthermore, collagen XXIII is sufficient to induce adhesion and spreading of keratinocytes, a process that is significantly reduced in the absence of functional integrin α(2)ß(1).


Asunto(s)
Colágeno/metabolismo , Epidermis/metabolismo , Integrina alfa2beta1/metabolismo , Adhesión Celular , Línea Celular , Adhesiones Focales , Humanos , Inmunohistoquímica , Queratinocitos/citología , Queratinocitos/metabolismo , Ligandos , Resonancia por Plasmón de Superficie
18.
J Invest Dermatol ; 142(7): 1923-1933.e5, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34968503

RESUMEN

Matrix metalloproteinase (MMP) 14 belongs to a large family of zinc-dependent endopeptidases and plays a critical role in skin physiological and pathological processes. Complete loss of the protease resulted in severe developmental defects leading to early death. However, because of the premature death of the mice, the functional significance for endothelial cell (EC) expression of MMP14 in skin physiology and pathology in vivo after birth is yet unknown. Using a mouse model with constitutive EC-specific deletion of Mmp14 (Mmp14EC‒/‒), we showed that mice developed and bred normal, but melanoma growth and metastasis were reduced. Although vascularity was unaltered, vessel permeability was decreased. Deletion of MMP14 in ECs led to increased vessel coverage by pericytes and vascular endothelial-cadherin expression in mice in vivo and in vitro but not in human ECs. Endothelial nitric oxide synthase expression and nitric oxide production were significantly reduced in Mmp14EC‒/‒ ECs and MMP14-silenced human umbilical vein ECs. A direct correlation between endothelial nitric oxide synthase and MMP14 expression was detected in intratumoral vessels of human malignant melanomas. Altogether, we show that endothelial MMP14 controls tumor vessel function during melanoma growth. These data suggest that EC-derived MMP14 direct targeting alone or with vascular stabilizing agents may be therapeutically crucial in inhibiting melanoma growth and metastasis.


Asunto(s)
Metaloproteinasa 14 de la Matriz , Melanoma , Animales , Permeabilidad Capilar , Células Endoteliales/metabolismo , Humanos , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Melanoma/irrigación sanguínea , Melanoma/patología , Ratones , Metástasis de la Neoplasia , Óxido Nítrico Sintasa de Tipo III/metabolismo
19.
J Biol Chem ; 284(50): 34747-59, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19850917

RESUMEN

Recently, a few fish proteins have been described with a high homology to B-type lectins of monocotyledonous plants. Because of their mannose binding activity, they have been ascribed a role in innate immunity. By screening various fish venoms for their integrin inhibitory activity, we isolated a homologous protein from the fin stings and skin mucus of the scorpionfish (Scorpaena plumieri). This protein inhibits alpha1beta1 integrin binding to basement membrane collagen IV. By protein chemical and spectroscopic means, we demonstrated that this fish protein, called plumieribetin, is a homotetramer and contains a high content of anti-parallel beta strands, similar to the mannose-binding monocot B-lectins. It lacks both N-linked glycoconjugates and common O-glycan motifs. Despite its B-lectin-like structure, plumieribetin binds to alpha1beta1 integrin irrespective of N-glycosylation, suggesting a direct protein-protein interaction. This interaction is independent of divalent cations. On the cellular level, plumieribetin failed to completely detach hepatocarcinoma HepG2 cells and primary arterial smooth muscle cells from the collagen IV fragment CB3. However, plumieribetin weakened the cell-collagen contacts, reduced cell spreading, and altered the actin cytoskeleton, after the compensating alpha2beta1 integrin was blocked. The integrin inhibiting effect of plumieribetin adds a new function to the B-lectin family, which is known for pathogen defense.


Asunto(s)
Colágeno Tipo IV/metabolismo , Peces , Integrina alfa1beta1/metabolismo , Lectinas/metabolismo , Secuencia de Aminoácidos , Animales , Conformación de Carbohidratos , Secuencia de Carbohidratos , Adhesión Celular/fisiología , Línea Celular , Humanos , Lectinas/química , Lectinas/genética , Análisis por Micromatrices , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Ponzoñas/química
20.
FASEB J ; 23(9): 2917-27, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19369383

RESUMEN

The integrin alpha2beta1 plays an important role in various pathophysiological processes, such as thrombosis, wound healing, inflammation, and metastasis. Rhodocetin, a constituent of the venom of the hemorrhagic Malayan pit viper (Calloselasma rhodostoma), is a specific alpha2beta1 integrin antagonist. To understand its molecular mode of action, its structure was studied by crystallography. Its quaternary structure in solution was also analyzed biochemically. Two novel subunits of rhodocetin were sequenced by mass spectrometry. Their integrin binding was measured by protein interaction ELISAs. Rhodocetin is a C-type lectin-like protein (CLP) consisting of four homologous, yet distinct, subunits, alpha, beta, gamma, and delta, the latter two of which have been unknown to date. With their CLP folds and loop-swapping motifs, the subunits alpha, beta and gamma, delta form two heterodimeric pairs. Uniquely, they arrange orthogonally and shape a cruciform molecule. Bearing a single unpaired cysteine residue, rhodocetin can only form covalent supramolecular complexes with a maximum aggregation number of 2, unlike many heterodimeric CLPs. Being the first heterotetrameric CLP to be crystallized, rhodocetin provides not only the prototypic molecular structure for heterotetrameric CLPs, but also a lead structure for pharmaceutical alpha2beta1 integrin antagonists.


Asunto(s)
Venenos de Crotálidos/química , Integrina alfa2beta1/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Espectrometría de Masas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Viperidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA