Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 9(4): e1003458, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637627

RESUMEN

In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation in bacteria, and define the phylogenetic relationships within the Neisseriaceae family.


Asunto(s)
Neisseriaceae , Filogenia , Secuencia de Bases , ADN , ADN Bacteriano/genética , Humanos , Datos de Secuencia Molecular , Transformación Bacteriana
2.
J Clin Virol ; 141: 104906, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34273860

RESUMEN

OBJECTIVES: The emerging SARS-CoV-2 variants of concern (VoC), B.1.1.7, B.1.351 and P.1, with increased transmission and/or immune evasion, emphasise the need for broad and rapid variant monitoring. Our high-volume laboratory introduced a PCR variant assay (Variant PCR) in January 2021 based on the protocol by Vogels et al. STUDY DESIGN: To assess whether Variant PCR could be used for rapid B.1.1.7, B.1.351 and P.1 screening, all positive SARS-CoV-2 airway samples were prospectively tested in parallel using both the Variant PCR and whole genome sequencing (WGS). RESULTS: In total 1,642 SARS-CoV-2 positive samples from individual patients were tested within a time span of 4 weeks. For all samples with valid results from both Variant PCR and WGS, no VoC was missed by Variant PCR (totalling 399 VoC detected). Conversely, all of the samples identified as "other lineages" (i.e., "non-VoC lineages") by the Variant PCR, were confirmed by WGS. CONCLUSIONS: The Variant PCR based on the protocol by Vogels et al., is an effective method for rapid screening for VoC, applicable for most diagnostic laboratories within a pandemic setting. WGS is still required to confirm the identity of certain variants and for continuous surveillance of emerging VoC.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Laboratorios , Reacción en Cadena de la Polimerasa , Secuenciación Completa del Genoma
3.
PLoS One ; 7(7): e39742, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768309

RESUMEN

Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination.


Asunto(s)
ADN Bacteriano/genética , Recombinación Homóloga/fisiología , Neisseria meningitidis/genética , Transformación Bacteriana/fisiología , ADN Bacteriano/metabolismo , Neisseria meningitidis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA