Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Radiol ; 25(4): 1154-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25287263

RESUMEN

OBJECTIVES: To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. METHODS: A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative (18) F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. RESULTS: MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). CONCLUSIONS: Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. KEY POINTS: • State-of-the-art breast MRI using a dedicated PET/MR breast coil is feasible. • A multi-channel design facilitates shorter MR acquisition times via parallel imaging. • An MR coil inside a simultaneous PET/MR system causes PET photon attenuation. • Including a coil CT-template in PET image reconstruction results in recovering accurate quantification.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Mama/diagnóstico por imagen , Mama/patología , Diseño de Equipo , Femenino , Fluorodesoxiglucosa F18 , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Fantasmas de Imagen , Radiofármacos , Reproducibilidad de los Resultados , Relación Señal-Ruido
2.
J Magn Reson ; 192(2): 235-43, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18394937

RESUMEN

Using optimal control methods, robust broadband excitation pulses can be designed with a defined linear phase dispersion. Applications include increased bandwidth for a given pulse length compared to equivalent pulses requiring no phase correction, selective pulses, and pulses that mitigate the effects of relaxation. This also makes it possible to create pulses that are equivalent to ideal hard pulses followed by an effective evolution period. For example, in applications, where the excitation pulse is followed by a constant delay, e.g. for the evolution of heteronuclear couplings, part of the pulse duration can be absorbed in existing delays, significantly reducing the time overhead of long, highly robust pulses. We refer to the class of such excitation pulses with a defined linear phase dispersion as ICEBERG pulses (Inherent Coherence Evolution optimized Broadband Excitation Resulting in constant phase Gradients). A systematic study of the dependence of the excitation efficiency on the phase dispersion of the excitation pulses is presented, which reveals surprising opportunities for improved pulse sequence performance.

3.
J Magn Reson ; 228: 16-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23333616

RESUMEN

We present highly robust, optimal control-based shaped pulses designed to replace all 90° and 180° hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90° and 180° point-to-point (PP) and universal rotation (UR) pulses of identical duration. These 1ms pulses provide uniform performance over resonance offsets of 20kHz ((1)H) and 35kHz ((13)C) and tolerate reasonably large radio frequency (RF) inhomogeneity/miscalibration of ±15% ((1)H) and ±10% ((13)C), making them especially suitable for NMR of small-to-medium-sized molecules (for which relaxation effects during the pulse are negligible) at an accessible and widely utilized spectrometer field strength of 600MHz. The experimental performance of conventional hard-pulse sequences is shown to be greatly improved by incorporating the new pulses, each set referred to as the Fantastic Four (Fanta4).


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Calibración , Formiatos/química , Humanos , Terpenos/química
4.
J Magn Reson ; 217: 53-60, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22425442

RESUMEN

Existing optimal control protocols for mitigating the effects of relaxation and/or RF inhomogeneity on broadband pulse performance are extended to the more difficult problem of designing robust, refocused, frequency selective excitation pulses. For the demanding case of T(1) and T(2) equal to the pulse length, anticipated signal losses can be significantly reduced while achieving nearly ideal frequency selectivity. Improvements in performance are the result of allowing residual unrefocused magnetization after applying relaxation-compensated selective excitation by optimized pulses (RC-SEBOPs). We demonstrate simple pulse sequence elements for eliminating this unwanted residual signal.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Ondas de Radio
5.
J Magn Reson ; 216: 78-87, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22325853

RESUMEN

Optimizing pulse performance often requires a compromise between maximizing signal amplitude and minimizing spectral phase errors. We consider methods for the de novo design of universal rotation pulses, applied specifically but not limited to refocusing pulses. Broadband inversion pulses that rotate all magnetization components 180° about a given fixed axis are necessary for refocusing and mixing in high-resolution NMR spectroscopy. The relative merits of various methodologies for generating pulses suitable for broadband refocusing are considered. The de novo design of 180° universal rotation pulses (180(UR)(°)) using optimal control can provide improved performance compared to schemes which construct refocusing pulses as composites of existing pulses. The advantages of broadband universal rotation by optimized pulses (BURBOP) are most evident for pulse design that includes tolerance to RF inhomogeneity or miscalibration. Nearly ideal refocusing is possible over a resonance offset range of ± 170% relative to the nominal pulse B(1) field, concurrent with tolerance to B(1) inhomogeneity/miscalibration of ± 33%. We present new modifications of the optimal control algorithm that incorporate symmetry principles (S-BURBOP) and relax conservative limits on peak RF pulse amplitude for short time periods that pose no threat to the probe. We apply them to generate a set of low-power 180(BURBOP)(°) pulses suitable for widespread use in (13)C spectroscopy on the majority of available probes. A quantitative measure for the reduced spectral phase error provided by these symmetry principles is also derived. For pulses designed according to this symmetry, refocusing phase errors are virtually eliminated upon application of EXORCYCLE or an equivalent G-180(S-BURBOP)(°)-G gradient sandwich, independent of resonance offset and RF inhomogeneity. The magnitude of the refocused component is not significantly compromised in achieving such ideal phase performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA