Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(21): 10360-10365, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31072929

RESUMEN

Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 Å resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.


Asunto(s)
Lipoproteína Lipasa/química , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/química , Receptores de Lipoproteína/metabolismo , Células HEK293 , Humanos , Hidrólisis , Metabolismo de los Lípidos/fisiología , Lipólisis/fisiología , Lipoproteínas/metabolismo , Triglicéridos/metabolismo
2.
J Biol Chem ; 295(10): 2900-2912, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31645434

RESUMEN

Lipoprotein lipase (LPL) is central to triglyceride metabolism. Severely compromised LPL activity causes familial chylomicronemia syndrome (FCS), which is associated with very high plasma triglyceride levels and increased risk of life-threatening pancreatitis. Currently, no approved pharmacological intervention can acutely lower plasma triglycerides in FCS. Low yield, high aggregation, and poor stability of recombinant LPL have thus far prevented development of enzyme replacement therapy. Recently, we showed that LPL monomers form 1:1 complexes with the LPL transporter glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) and solved the structure of the complex. In the present work, we further characterized the monomeric LPL/GPIHBP1 complex and its derivative, the LPL-GPIHBP1 fusion protein, with the goal of contributing to the development of an LPL enzyme replacement therapy. Fusion of LPL to GPIHBP1 increased yields of recombinant LPL, prevented LPL aggregation, stabilized LPL against spontaneous inactivation, and made it resistant to inactivation by the LPL antagonists angiopoietin-like protein 3 (ANGPTL3) or ANGPTL4. The high stability of the fusion protein enabled us to identify LPL amino acids that interact with ANGPTL4. Additionally, the LPL-GPIHBP1 fusion protein exhibited high enzyme activity in in vitro assays. Importantly, both intravenous and subcutaneous administrations of the fusion protein lowered triglycerides in several mouse strains without causing adverse effects. These results indicate that the LPL-GPIHBP1 fusion protein has potential for use as a therapeutic for managing FCS.


Asunto(s)
Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/metabolismo , Triglicéridos/sangre , Secuencia de Aminoácidos , Proteína 3 Similar a la Angiopoyetina , Proteína 4 Similar a la Angiopoyetina/química , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteínas Similares a la Angiopoyetina/química , Proteínas Similares a la Angiopoyetina/metabolismo , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Humanos , Hiperlipoproteinemia Tipo I/tratamiento farmacológico , Hiperlipoproteinemia Tipo I/patología , Infusiones Subcutáneas , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Agregado de Proteínas/efectos de los fármacos , Estabilidad Proteica , Receptores de Lipoproteína/química , Receptores de Lipoproteína/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico
3.
Mol Cell ; 47(3): 396-409, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22704558

RESUMEN

Completion of DNA replication after replication stress depends on PCNA, which undergoes monoubiquitination to stimulate direct bypass of DNA lesions by specialized DNA polymerases or is polyubiquitinated to promote recombination-dependent DNA synthesis across DNA lesions by template switching mechanisms. Here we report that the ZRANB3 translocase, a SNF2 family member related to the SIOD disorder SMARCAL1 protein, is recruited by polyubiquitinated PCNA to promote fork restart following replication arrest. ZRANB3 depletion in mammalian cells results in an increased frequency of sister chromatid exchange and DNA damage sensitivity after treatment with agents that cause replication stress. Using in vitro biochemical assays, we show that recombinant ZRANB3 remodels DNA structures mimicking stalled replication forks and disassembles recombination intermediates. We therefore propose that ZRANB3 maintains genomic stability at stalled or collapsed replication forks by facilitating fork restart and limiting inappropriate recombination that could occur during template switching events.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Inestabilidad Genómica/fisiología , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Estrés Fisiológico/genética , Secuencia de Aminoácidos , Línea Celular Tumoral , Daño del ADN/fisiología , ADN Helicasas/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Datos de Secuencia Molecular , Osteosarcoma , Unión Proteica/fisiología , Recombinación Genética/fisiología , Intercambio de Cromátides Hermanas/fisiología , Ubiquitinación/fisiología
4.
Genes Dev ; 25(4): 350-62, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325134

RESUMEN

Repair of dsDNA breaks requires processing to produce 3'-terminated ssDNA. We biochemically reconstituted DNA end resection using purified human proteins: Bloom helicase (BLM); DNA2 helicase/nuclease; Exonuclease 1 (EXO1); the complex comprising MRE11, RAD50, and NBS1 (MRN); and Replication protein A (RPA). Resection occurs via two routes. In one, BLM and DNA2 physically and specifically interact to resect DNA in a process that is ATP-dependent and requires BLM helicase and DNA2 nuclease functions. RPA is essential for both DNA unwinding by BLM and enforcing 5' → 3' resection polarity by DNA2. MRN accelerates processing by recruiting BLM to the end. In the other, EXO1 resects the DNA and is stimulated by BLM, MRN, and RPA. BLM increases the affinity of EXO1 for ends, and MRN recruits and enhances the processivity of EXO1. Our results establish two of the core machineries that initiate recombinational DNA repair in human cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Roturas del ADN de Cadena Simple , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/fisiología , Humanos , Técnicas In Vitro , Proteína Homóloga de MRE11 , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Unión Proteica/fisiología , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/fisiología , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/fisiología
5.
J Biol Chem ; 287(34): 28727-37, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22761450

RESUMEN

The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance. Dmc1, a meiosis-specific paralog of Rad51, mediates the pairing of homologous chromosomes. Tid1, a Rad54 paralog, although not meiosis-specific, interacts with Dmc1 and promotes crossover formation between homologs. In this study, we show that purified Dmc1 and Tid1 interact physically and functionally. Dmc1 forms stable nucleoprotein filaments that can mediate DNA strand invasion. Tid1 stimulates Dmc1-mediated formation of joint molecules. Under conditions optimal for Dmc1 reactions, Rad51 is specifically stimulated by Rad54, establishing that Dmc1-Tid1 and Rad51-Rad54 function as specific pairs. Physical interaction studies show that specificity in function is not dictated by direct interactions between the proteins. Our data are consistent with the hypothesis that Rad51-Rad54 function together to promote intersister DNA strand exchange, whereas Dmc1-Tid1 tilt the bias toward interhomolog DNA strand exchange.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN-Topoisomerasas/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , ADN-Topoisomerasas/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Meiosis/fisiología , Recombinasa Rad51/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Proc Natl Acad Sci U S A ; 106(9): 3077-82, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19204284

RESUMEN

Saccharomyces cerevisiae Rad52 performs multiple functions during the recombinational repair of double-stranded DNA (dsDNA) breaks (DSBs). It mediates assembly of Rad51 onto single-stranded DNA (ssDNA) that is complexed with replication protein A (RPA); the resulting nucleoprotein filament pairs with homologous dsDNA to form joint molecules. Rad52 also catalyzes the annealing of complementary strands of ssDNA, even when they are complexed with RPA. Both Rad51 and Rad52 can be envisioned to promote "second-end capture," a step that pairs the ssDNA generated by processing of the second end of a DSB to the joint molecule formed by invasion of the target dsDNA by the first processed end. Here, we show that Rad52 promotes annealing of complementary ssDNA that is complexed with RPA to the displaced strand of a joint molecule, to form a complement-stabilized joint molecule. RecO, a prokaryotic homolog of Rad52, cannot form complement-stabilized joint molecules with RPA-ssDNA complexes, nor can Rad52 promote second-end capture when the ssDNA is bound with either human RPA or the prokaryotic ssDNA-binding protein, SSB, indicating a species-specific process. We conclude that Rad52 participates in second-end capture by annealing a resected DNA break, complexed with RPA, to the joint molecule product of single-end invasion event. These studies support a role for Rad52-promoted annealing in the formation of Holliday junctions in DSB repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN/genética , Plásmidos/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Humanos , Unión Proteica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
7.
Proc Natl Acad Sci U S A ; 105(44): 16906-11, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18971343

RESUMEN

The error-free repair of double-stranded DNA breaks by homologous recombination requires processing of broken ends. These processed ends are substrates for assembly of DNA strand exchange proteins that mediate DNA strand invasion. Here, we establish that human BLM helicase, a member of the RecQ family, stimulates the nucleolytic activity of human exonuclease 1 (hExo1), a 5'-->3' double-stranded DNA exonuclease. The stimulation is specific because other RecQ homologs fail to stimulate hExo1. Stimulation of DNA resection by hExo1 is independent of BLM helicase activity and is, instead, mediated by an interaction between the 2 proteins. Finally, we show that DNA ends resected by hExo1 and BLM are used by human Rad51, but not its yeast or bacterial counterparts, to promote homologous DNA pairing. This in vitro system recapitulates initial steps of homologous recombination and provides biochemical evidence for a role of BLM and Exo1 in the initiation of recombinational DNA repair.


Asunto(s)
ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Adenosina Trifosfatasas/metabolismo , ADN/química , Roturas del ADN de Doble Cadena , ADN Helicasas/química , ADN Helicasas/genética , Enzimas Reparadoras del ADN/química , Exodesoxirribonucleasas/química , Humanos , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , Recombinación Genética , Proteína de Replicación A/metabolismo
8.
Nucleic Acids Res ; 31(18): 5275-81, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12954763

RESUMEN

ICP8, the herpes simplex virus type-1 encoded single-strand DNA (ssDNA)-binding protein, promotes the assimilation of a single-stranded DNA molecule into a homologous duplex plasmid resulting in the formation of a displacement loop. Here we examine the mechanism of this process. In contrast to the RecA-type recombinases that catalyze strand invasion via an active search for homology, ICP8 acts by a salt-dependent strand annealing mechanism. The active species in this reaction is a ssDNA:ICP8 nucleoprotein filament. There appears to be no requirement for ICP8 to interact with the acceptor DNA. At higher concentrations, ICP8 promotes the reverse reaction, presumably owing to its helix destabilizing activity. ICP8-mediated strand assimilation imparts single-stranded character onto the acceptor DNA, consistent with the formation of a displacement loop. These data suggest that the recombination activity of ICP8 is similar to the mechanism of eukaryotic Rad52.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/metabolismo , ADN de Cadena Simple/química , Modelos Químicos , Conformación de Ácido Nucleico , Nucleoproteínas/metabolismo , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Rec A Recombinasas/metabolismo , Temperatura
9.
J Biol Chem ; 282(42): 30776-84, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17704061

RESUMEN

The Saccharomyces cerevisiae Tid1 protein is important for the recombinational repair of double-stranded DNA breaks during meiosis. Tid1 is a member of Swi2/Snf2 family of chromatin remodeling proteins and shares homology with Rad54. Members of this family hydrolyze ATP and promote 1) chromatin remodeling, 2) DNA topology alterations, and 3) displacement of proteins from DNA. All of these activities are presumed to require translocation of the protein on DNA. Here we use single-molecule visualization to provide direct evidence for the ability of Tid1 to translocate on DNA. Tid1 translocation is ATP-dependent, and the velocities are broadly distributed, with the average being 84 +/- 39 base pairs/s. Translocation is processive, with the average molecule traveling approximately 10,000 base pairs before pausing or dissociating. Many molecules display simple monotonic unidirectional translocation, but the majority display complex translocation behavior comprising intermittent pauses, direction reversals, and velocity changes. Finally, we demonstrate that translocation by Tid1 on DNA can result in disruption of three-stranded DNA structures. The ability of Tid1 translocation to clear DNA of proteins and to migrate recombination intermediates may be of critical importance for DNA repair and chromosome dynamics.


Asunto(s)
Adenosina Trifosfato/química , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , ADN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatasas , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Cromosomas Fúngicos/química , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN/genética , ADN/metabolismo , ADN Helicasas , Enzimas Reparadoras del ADN , ADN-Topoisomerasas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hidrólisis , Unión Proteica/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Biol Chem ; 279(21): 21957-65, 2004 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-15026409

RESUMEN

Recombination-dependent replication is an integral part of the process by which double-strand DNA breaks are repaired to maintain genome integrity. It also serves as a means to replicate genomic termini. We reported previously on the reconstitution of a recombination-dependent replication system using purified herpes simplex virus type 1 proteins (Nimonkar A. V., and Boehmer, P. E. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 10201-10206). In this system, homologous pairing by the viral single-strand DNA-binding protein (ICP8) is coupled to DNA synthesis by the viral DNA polymerase and helicase-primase in the presence of a DNA-relaxing enzyme. Here we show that DNA synthesis in this system is dependent on the viral polymerase processivity factor (UL42). Moreover, although DNA synthesis is strictly dependent on topoisomerase I, it is only stimulated by the viral helicase in a manner that requires the helicase-loading protein (UL8). Furthermore, we have examined the dependence of DNA synthesis in the viral system on species-specific protein-protein interactions. Optimal DNA synthesis was observed with the herpes simplex virus type 1 replication proteins, ICP8, DNA polymerase (UL30/UL42), and helicase-primase (UL5/UL52/UL8). Interestingly, substitution of each component with functional homologues from other systems for the most part did not drastically impede DNA synthesis. In contrast, recombination-dependent replication promoted by the bacteriophage T7 replisome was disrupted by substitution with the replication proteins from herpes simplex virus type 1. These results show that although DNA synthesis performed by the T7 replisome is dependent on cognate protein-protein interactions, such interactions are less important in the herpes simplex virus replisome.


Asunto(s)
Herpesvirus Humano 1/genética , Recombinación Genética , Replicación Viral , Bacteriófago T7/metabolismo , ADN/química , ADN Helicasas/química , ADN Helicasas/fisiología , ADN Primasa , Proteínas de Unión al ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Exodesoxirribonucleasas/metabolismo , Herpesvirus Humano 1/enzimología , Oligonucleótidos/química , Unión Proteica , Estructura Terciaria de Proteína , Factores de Tiempo , Proteínas Virales/metabolismo , Proteínas Virales/fisiología
11.
IUBMB Life ; 55(1): 13-22, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12716057

RESUMEN

Herpesviruses are large double stranded DNA animal viruses with the distinguishing ability to establish latent, life-long infections. To date, eight human herpesviruses that exhibit distinct biological and corresponding pathological/clinical properties have been identified. During their life cycles, herpesviruses execute an intricate chain of events geared towards optimizing their replication. This sets an interesting paradigm to study fundamental biological processes. This review summarizes recent developments in herpesvirus research with emphasis on genome transactions, particularly with respect to the prototypic herpes simplex virus type-1.


Asunto(s)
Herpesvirus Humano 1/fisiología , Replicación Viral/fisiología , Animales , Ciclo Celular/fisiología , ADN Circular/metabolismo , ADN Viral/metabolismo , Genoma Viral , Herpesvirus Humano 1/genética , Humanos , Recombinación Genética
12.
Proc Natl Acad Sci U S A ; 100(18): 10201-6, 2003 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-12928502

RESUMEN

The repair of double-strand DNA breaks by homologous recombination is essential for the maintenance of genome stability. In herpes simplex virus 1, double-strand DNA breaks may arise as a consequence of replication fork collapse at sites of oxidative damage, which is known to be induced upon viral infection. Double-strand DNA breaks are also generated by cleavage of viral a sequences by endonuclease G during genome isomerization. We have reconstituted a system using purified proteins in which strand invasion is coupled with DNA synthesis. In this system, the viral single-strand DNA-binding protein promotes assimilation of single-stranded DNA into a homologous supercoiled plasmid, resulting in the formation of a displacement loop. The 3' terminus of the invading DNA serves as a primer for long-chain DNA synthesis promoted by the viral DNA replication proteins, including the polymerase and helicase-primase. Efficient extension of the invading primer also requires a DNA-relaxing enzyme (eukaryotic topoisomerase I or DNA gyrase). The viral polymerase by itself is insufficient for DNA synthesis, and a DNA-relaxing enzyme cannot substitute for the viral helicase-primase. The viral single-strand DNA-binding protein, in addition to its role in the invasion process, is also required for long-chain DNA synthesis. Form X, a topologically distinct, positively supercoiled form of displacement-loop, does not serve as a template for DNA synthesis. These observations support a model in which recombination and replication contribute toward maintaining viral genomic stability by repairing double-strand breaks. They also account for the extensive branching observed during viral replication in vivo.


Asunto(s)
ADN Viral/biosíntesis , Herpesvirus Humano 1/genética , Recombinación Genética , Replicación del ADN , Proteínas de Unión al ADN , Moldes Genéticos , Proteínas Virales/fisiología
13.
J Biol Chem ; 278(11): 9678-82, 2003 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-12645567

RESUMEN

ICP8, the herpes simplex virus type-1 single-strand DNA-binding protein, was recently shown to promote strand exchange in conjunction with the viral replicative helicase (Nimonkar, A. V., and Boehmer, P. E. (2002) J. Biol. Chem. 277, 15182-15189). Here we show that ICP8 also catalyzes strand invasion in an ATP-independent manner. Thus, ICP8 promotes the assimilation of a single-stranded donor molecule into a homologous plasmid, resulting in the formation of a displacement loop. Invasion of a homologous duplex by single-stranded DNA requires homology at either 3' or 5' end of the invading strand. The reaction is dependent on the free energy of supercoiling and alters the topology of the acceptor plasmid. Hence, strand invasion products formed by ICP8 are resistant to the action of restriction endonucleases that cleave outside of the area of pairing. The ability to catalyze strand invasion is a novel activity of ICP8 and the first demonstration of a eukaryotic viral single-strand DNA-binding protein to promote this reaction. In this regard ICP8 is functionally similar to the prototypical prokaryotic recombinase RecA and its eukaryotic homologs. This strand invasion activity of ICP8 coupled with DNA synthesis may explain the high prevalence of branched DNA structures during viral replication.


Asunto(s)
Ácidos Nucleicos/química , Proteínas Virales/química , Adenosina Trifosfato/metabolismo , Catálisis , Proteínas de Unión al ADN , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Agar , Endonucleasas/metabolismo , Etidio/farmacología , Plásmidos/metabolismo , Rec A Recombinasas/metabolismo , Proteínas Virales/metabolismo
15.
J Biol Chem ; 277(17): 15182-9, 2002 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-11832483

RESUMEN

The genome of herpes simplex virus type-1 undergoes a high frequency of homologous recombination in the absence of a virus-encoded RecA-type protein. We hypothesized that viral homologous recombination is mediated by the combined action of the viral single strand DNA-binding protein (ICP8) and helicase-primase. Our results show that ICP8 catalyzes the formation of recombination intermediates (joint molecules) between circular single-stranded acceptor and linear duplex donor DNA. Joint molecules formed by invasion of a 3'-terminal strand displaces the non-complementary 5'-terminal strand, thereby creating a loading site for the helicase-primase. Helicase-primase acts on these joint molecules to promote ATP-dependent branch migration. Finally, we have reconstituted strand exchange by the synchronous action of ICP8 and helicase-primase. Based on these data, we present a recombination mechanism for a eukaryotic DNA virus in which a single strand DNA-binding protein and helicase cooperate to promote homologous pairing and branch migration.


Asunto(s)
ADN Helicasas/metabolismo , ADN Primasa/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Virales/metabolismo , Catálisis , Replicación del ADN , ADN Viral/biosíntesis , ADN Viral/metabolismo , Proteínas de Unión al ADN , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA