Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 155(7): 1596-609, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24360280

RESUMEN

Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Aprendizaje/fisiología , Microglía/fisiología , Sinapsis , Animales , Receptor 1 de Quimiocinas CX3C , Expresión Génica , Ratones , Microglía/citología , Plasticidad Neuronal , Proteínas Quinasas/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Transducción de Señal
2.
Synapse ; 73(6): e22090, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30720888

RESUMEN

Fear extinction, an inhibitory learning that suppresses a previously learned fear memory, is diminished during adolescence. Earlier studies have shown that this suppressed fear extinction during adolescence involves an altered glutamatergic plasticity in infralimbic medial prefrontal cortical (IL-mPFC) pyramidal neurons. However, it is unclear whether the excitability of IL-mPFC pyramidal neurons plays a role in this development-dependent suppression of fear extinction. Therefore, we examined whether fear conditioning and extinction affect the active and passive membrane properties of IL-mPFC layer 5 pyramidal neurons in preadolescent, adolescent and adult mice. Both preadolescent and adult mice exhibited a bidirectional modulation of the excitability of IL-mPFC layer 5 pyramidal neurons following fear conditioning and extinction, i.e., fear conditioning reduced membrane excitability, whereas fear extinction reversed this effect. However, the fear conditioning-induced suppression of excitability was not reversed in adolescent mice following fear extinction training. Neither fear conditioning nor extinction affected GABAergic transmission in IL-mPFC layer 5 pyramidal neurons, suggesting that GABAergic transmission did not play a role in experience-dependent modulation of neuronal excitability. Our results suggest that the extinction-specific modulation of excitability is impaired during adolescence.


Asunto(s)
Extinción Psicológica , Sistema Límbico/crecimiento & desarrollo , Plasticidad Neuronal , Corteza Prefrontal/crecimiento & desarrollo , Animales , Miedo , Neuronas GABAérgicas/fisiología , Sistema Límbico/citología , Sistema Límbico/fisiología , Masculino , Ratones , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología
3.
Mol Cell Neurosci ; 77: 105-112, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27793697

RESUMEN

Of the two major subdivisions of the habenula, the medial and lateral nuclei, the medial habenula is the least understood in terms of synaptic transmission, intrinsic properties and plasticity. The medial habenula (MHb) is composed of glutamatergic neurons which receive the majority of their inputs from the septal region and project predominantly to the interpeduncular nucleus (IPN). To understand the synaptic transmission, we studied both glutamatergic and GABAergic synaptic transmission in the dorsal region of the medial habenula (dMHb). While glutamatergic transmission dominates during early development, an attenuation of glutamatergic transmission and an enhancement of GABAergic transmission occur during development leading into adulthood. Furthermore, as reported previously, GABAA receptor-mediated transmission is excitatory in the adult dMHb, which is consistent with the reduced expression of the K-Cl co-transporter KCC2. Given the potential role of the dMHb in aversive behaviors, we examined whether fear conditioning or exposure to foot shock affects excitability in dMHb neurons. We observed a suppression of the excitability of dMHb neurons in mice that either underwent fear conditioning or were exposed to foot shock. Furthermore, we observed a suppression of GABAergic but not glutamatergic transmission in the dMHb neurons following fear conditioning. These results suggest that aversive experience produces a suppression of the dMHb neuronal activity. Given that the medial habenula is upstream of the median raphe nucleus which is believed to be involved in the negative regulation of aversive memory, the suppression of dMHb neurons following an aversive experience might play a role in strengthening of aversive memories.


Asunto(s)
Condicionamiento Clásico , Habénula/fisiología , Neurogénesis , Plasticidad Neuronal , Transmisión Sináptica , Animales , Miedo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Habénula/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ácido gamma-Aminobutírico/metabolismo
4.
Mol Cell Neurosci ; 58: 76-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24321452

RESUMEN

The dystrobrevin binding protein (DTNBP) 1 gene has emerged over the last decade as a potential susceptibility locus for schizophrenia. While no causative mutations have been found, reduced expression of the encoded protein, dysbindin, was reported in patients. Dysbindin likely plays a role in the neuronal trafficking of proteins including receptors. One important pathway suspected to be affected in schizophrenia is the fast excitatory glutamatergic transmission mediated by AMPA receptors. Here, we investigated excitatory synaptic transmission and plasticity in hippocampal neurons from dysbindin-deficient sandy mice bred on the DBA/2J strain. In cultured neurons an enhancement of AMPAR responses was observed. The enhancement of AMPAR-mediated transmission was confirmed in hippocampal CA3-CA1 synapses, and was not associated with changes in the expression of GluA1-4 subunits or an increase in GluR2-lacking receptor complexes. Lastly, an enhancement in LTP was also found in these mice. These data provide compelling evidence that dysbindin, a widely suspected susceptibility protein in schizophrenia, is important for AMPAR-mediated synaptic transmission and plasticity in the developing hippocampus.


Asunto(s)
Proteínas Portadoras/metabolismo , Potenciación a Largo Plazo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica , Animales , Proteínas Portadoras/genética , Células Cultivadas , Disbindina , Proteínas Asociadas a la Distrofina , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipocampo/fisiología , Ratones , Ratones Endogámicos DBA , Neuronas/fisiología , Receptores AMPA/genética , Esquizofrenia/genética
5.
Proc Natl Acad Sci U S A ; 109(40): 16318-23, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988092

RESUMEN

The only evidence-based behavioral treatment for anxiety and stress-related disorders involves desensitization techniques that rely on principles of extinction learning. However, 40% of patients do not respond to this treatment. Efforts have focused on individual differences in treatment response, but have not examined when, during development, such treatments may be most effective. We examined fear-extinction learning across development in mice and humans. Parallel behavioral studies revealed attenuated extinction learning during adolescence. Probing neural circuitry in mice revealed altered synaptic plasticity of prefrontal cortical regions implicated in suppression of fear responses across development. The results suggest a lack of synaptic plasticity in the prefrontal regions, during adolescence, is associated with blunted regulation of fear extinction. These findings provide insight into optimizing treatment outcomes for when, during development, exposure therapies may be most effective.


Asunto(s)
Trastornos de Ansiedad/psicología , Trastornos de Ansiedad/terapia , Condicionamiento Psicológico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Plasticidad Neuronal/fisiología , Adolescente , Adulto , Análisis de Varianza , Animales , Niño , Femenino , Respuesta Galvánica de la Piel , Humanos , Inmunohistoquímica , Masculino , Ratones , Microscopía de Interferencia , Corteza Prefrontal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo
6.
J Neurosci ; 33(14): 6123-32, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23554493

RESUMEN

The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.


Asunto(s)
Neuronas/metabolismo , Receptores AMPA/metabolismo , Sacarosa/administración & dosificación , Edulcorantes/administración & dosificación , Animales , Proteínas Portadoras , Condicionamiento Operante/fisiología , Dopamina beta-Hidroxilasa/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Locomoción/fisiología , Masculino , Microscopía Electrónica de Transmisión , Neuronas/efectos de los fármacos , Núcleo Accumbens/citología , Fosfoproteínas/metabolismo , Densidad Postsináptica/metabolismo , Densidad Postsináptica/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
7.
Proc Natl Acad Sci U S A ; 108(3): 1182-7, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21220344

RESUMEN

Highly conserved neural circuitry between rodents and humans has allowed for in-depth characterization of behavioral and molecular processes associated with emotional learning and memory. Despite increased prevalence of affective disorders in adolescent humans, few studies have characterized how associative-emotional learning changes during the transition through adolescence or identified mechanisms underlying such changes. By examining fear conditioning in mice, as they transitioned into and out of adolescence, we found that a suppression of contextual fear occurs during adolescence. Although contextual fear memories were not expressed during early adolescence, they could be retrieved and expressed as the mice transitioned out of adolescence. This temporary suppression of contextual fear was associated with blunted synaptic activity in the basal amygdala and decreased PI3K and MAPK signaling in the hippocampus. These findings reveal a unique form of brain plasticity in fear learning during early adolescence and may prove informative for understanding endogenous mechanisms to suppress unwanted fear memories.


Asunto(s)
Amígdala del Cerebelo/fisiología , Aprendizaje por Asociación/fisiología , Miedo/psicología , Hipocampo/fisiología , Memoria/fisiología , Psicología del Adolescente , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Western Blotting , Condicionamiento Psicológico/fisiología , Electrofisiología , Miedo/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo
8.
J Neurosci ; 32(7): 2410-21, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22396415

RESUMEN

The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is a common human single nucleotide polymorphism (SNP) that affects the regulated release of BDNF, and has been implicated in affective disorders and cognitive dysfunction. A decreased activation of the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for the regulation of affective behaviors, has been described in BDNF(Met) carriers. However, it is unclear whether and how the Val66Met polymorphism affects the IL-mPFC synapses. Here, we report that spike timing-dependent plasticity (STDP) was absent in the IL-mPFC pyramidal neurons from BDNF(Met/Met) mice, a mouse that recapitulates the specific phenotypic properties of the human BDNF Val66Met polymorphism. Also, we observed a decrease in NMDA and GABA receptor-mediated synaptic transmission in the pyramidal neurons of BDNF(Met/Met) mice. While BDNF enhanced non-NMDA receptor transmission and depressed GABA receptor transmission in the wild-type mice, both effects were absent in BDNF(Met/Met) mice after BDNF treatment. Indeed, exogenous BDNF reversed the deficits in STDP and NMDA receptor transmission in BDNF(Met/Met) neurons. BDNF-mediated selective reversal of the deficit in plasticity and NMDA receptor transmission, but its lack of effect on GABA and non-NMDA receptor transmission in BDNF(Met/Met) mice, suggests separate mechanisms of Val66Met polymorphism upon synaptic transmission. The effect of the Val66Met polymorphism on synaptic transmission and plasticity in the IL-mPFC represents a mechanism to account for this impact of SNP on affective disorders and cognitive dysfunction.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Metionina/genética , Polimorfismo de Nucleótido Simple/genética , Corteza Prefrontal/fisiología , Transmisión Sináptica/fisiología , Valina/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Miedo/fisiología , Humanos , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología
9.
bioRxiv ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37693545

RESUMEN

The current understanding of the neuromodulatory role of the median raphe nucleus (MRN) is primarily based on its putative serotonergic output. However, a significant proportion of raphe neurons are glutamatergic. The present study investigated how glutamatergic MRN input modulates the medial prefrontal cortex (mPFC), a critical component of the fear circuitry. Our studies show that VGLUT3-expressing MRN neurons modulate VGLUT3- and somatostatin-expressing neurons in the mPFC. Consistent with this modulation of mPFC GABAergic neurons, activation of MRN (VGLUT3) neurons suppresses mPFC pyramidal neuron activity and attenuates fear memory in female but not male mice. In agreement with these female-specific effects, we observed sex differences in glutamatergic transmission onto MRN (VGLUT3) neurons and mPFC (VGLUT3) neuron-mediated dual release of glutamate and GABA. Thus, our results demonstrate a cell type-specific modulation of the mPFC by MRN (VGLUT3) neurons and reveal a sex-specific role of this neuromodulation in mPFC synaptic plasticity and fear memory.

10.
Sci Adv ; 9(45): eadg4800, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948526

RESUMEN

A substantial proportion of raphe neurons are glutamatergic. However, little is known about how these glutamatergic neurons modulate the forebrain. We investigated how glutamatergic median raphe nucleus (MRN) input modulates the medial prefrontal cortex (mPFC), a critical component of fear circuitry. We show that vesicular glutamate transporter 3 (VGLUT3)-expressing MRN neurons activate VGLUT3- and somatostatin-expressing neurons in the mPFC. Consistent with this modulation of mPFC GABAergic neurons, activation of MRN (VGLUT3) neurons enhances GABAergic transmission in mPFC pyramidal neurons and attenuates fear memory in female but not male mice. Serotonin plays a key role in MRN (VGLUT3) neuron-mediated GABAergic plasticity in the mPFC. In agreement with these female-specific effects, we observed sex differences in glutamatergic transmission onto MRN (VGLUT3) neurons and in mPFC (VGLUT3) neuron-mediated dual release of glutamate and GABA. Our results demonstrate a cell type-specific modulation of the mPFC by MRN (VGLUT3) neurons and reveal a sex-specific role of this neuromodulation in mPFC synaptic plasticity.


Asunto(s)
Núcleos del Rafe , Proteínas de Transporte Vesicular de Glutamato , Femenino , Ratones , Animales , Masculino , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Núcleos del Rafe/metabolismo , Células Piramidales/metabolismo , Neuronas GABAérgicas/metabolismo , Corteza Prefrontal/metabolismo
11.
J Neurosci ; 31(34): 12083-93, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21865451

RESUMEN

The proteolytic machinery comprising metalloproteases and γ-secretase, an intramembrane aspartyl protease involved in Alzheimer's disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metalloproteases and γ-secretase are physiologic regulators of synapses. Both proteases are synaptic, with γ-secretase tethered at the synapse by δ-catenin, a synaptic scaffolding protein that also binds to N-cadherin and, through scaffolds, to AMPA receptor and a metalloprotease. Activity-dependent proteolysis by metalloproteases and γ-secretase takes place at both sides of the synapse, with the metalloprotease cleavage being NMDA receptor-dependent. This proteolysis decreases levels of synaptic proteins and diminishes synaptic transmission. Our results suggest that activity-dependent substrate cleavage by synaptic metalloproteases and γ-secretase modifies synaptic transmission, providing a novel form of synaptic autoregulation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Hipocampo/enzimología , Homeostasis/fisiología , Metaloproteasas/fisiología , Sinapsis/enzimología , Transmisión Sináptica/fisiología , Animales , Cateninas/deficiencia , Cateninas/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/enzimología , Membranas Sinápticas/ultraestructura , Catenina delta
12.
Neuron ; 56(4): 670-88, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18031684

RESUMEN

Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Animales , Dominio Catalítico , Línea Celular , Células Cultivadas , Proteína Quinasa Dependiente de GMP Cíclico Tipo II , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hipocampo/ultraestructura , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Técnicas de Cultivo de Órganos , Fosforilación , Unión Proteica/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
13.
J Neurosci ; 30(26): 8866-70, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20592208

RESUMEN

The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene results in a defect in regulated release of BDNF and affects episodic memory and affective behaviors. However, the precise role of the BDNF Val66Met polymorphism in hippocampal synaptic transmission and plasticity has not yet been studied. Therefore, we examined synaptic properties in the hippocampal CA3-CA1 synapses of BDNF(Met/Met) mice and matched wild-type mice. Although basal glutamatergic neurotransmission was normal, both young and adult mice showed a significant reduction in NMDA receptor-dependent long-term potentiation. We also found that NMDA receptor-dependent long-term depression was decreased in BDNF(Met/Met) mice. However, mGluR-dependent long-term depression was not affected by the BDNF Val66Met polymorphism. Consistent with the NMDA receptor-dependent synaptic plasticity impairment, we observed a significant decrease in NMDA receptor neurotransmission in the CA1 pyramidal neurons of BDNF(Met/Met) mice. Thus, these results show that the BDNF Val66Met polymorphism has a direct effect on NMDA receptor transmission, which may account for changes in synaptic plasticity in the hippocampus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Envejecimiento , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Femenino , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Polimorfismo Genético , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica/fisiología
14.
J Neurochem ; 119(2): 324-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21848811

RESUMEN

Both oxytocin and oxytocin receptors are implicated in neuropsychiatric disorders, particularly autism which involves a severe deficit in social cognition. Consistently, oxytocin enhances social cognition in humans and animals. The infralimbic medial prefrontal cortex (IL-mPFC) is believed to play an important role in the regulation of social cognition which might involve top-down control of subcortical structures including the amygdala. However, little is known about whether and how oxytocin modulates synaptic function in the IL-mPFC. The effect of oxytocin on excitatory neurotransmission in the IL-mPFC was studied by examining both the evoked and spontaneous excitatory neurotransmission in the IL-mPFC layer V pyramidal neurons before and after perfusion with oxytocin. To investigate the effect of oxytocin on synaptic plasticity, low-frequency stimulation-induced long-lasting depression was studied in oxytocin-treated brain slices. Oxytocin produced a significant suppression of glutamatergic neurotransmission in the IL-mPFC layer V pyramidal neurons which was mediated by a reduction in glutamate release. Activation of the cannabinoid CB1 receptors was involved in this pre-synaptic effect. Treatment of brain slices with oxytocin for 1 h converted long-lasting depression into long-lasting potentiation of glutamatergic neurotransmission. This oxytocin-mediated plasticity was NMDA receptor-dependent and was mediated by the synaptic insertion of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors. The aforementioned suppression of basal glutamatergic neurotransmission and facilitation of activity-dependent synaptic plasticity in the IL-mPFC might be critical for the effect of oxytocin on social cognition.


Asunto(s)
Ácido Glutámico/fisiología , Plasticidad Neuronal/efectos de los fármacos , Oxitocina/farmacología , Corteza Prefrontal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/fisiología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptores AMPA/efectos de los fármacos , Receptores de Oxitocina/efectos de los fármacos , Sinapsis/efectos de los fármacos
15.
Mol Cell Neurosci ; 45(2): 92-100, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20547223

RESUMEN

Activity-dependent changes of synaptic connections are facilitated by a variety of scaffold proteins, including PSD-95, Shank, SAP97 and GRIP, which serve to organize ion channels, receptors and enzymatic activities and to coordinate the actin cytoskeleton. The abundance of these scaffold proteins raises questions about the functional specificity of action of each protein. Here we report that basal synaptic transmission is regulated in an unexpected manner by the ankyrin repeat-rich membrane-spanning (ARMS/Kidins220) scaffold protein. In particular, decreases in the levels of ARMS/Kidins220 in vivo led to an increase in basal synaptic transmission in the hippocampus, without affecting paired pulse facilitation. One explanation to account for the effects of ARMS/Kidins220 is an interaction with the AMPA receptor subunit, GluA1, which could be observed after immunoprecipitation. Importantly, shRNA and cell surface biotinylation experiments indicate that ARMS/Kidins220 levels have an impact on GluA1 phosphorylation and localization. Moreover, ARMS/Kidins220 is a negative regulator of AMPAR function, which was confirmed by inward rectification assays. These results provide evidence that modulation of ARMS/Kidins220 levels can regulate basal synaptic strength in a specific manner in hippocampal neurons.


Asunto(s)
Proteínas de la Membrana/fisiología , Transmisión Sináptica/fisiología , Animales , Hipocampo/fisiología , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/análisis , Ratas , Ratas Sprague-Dawley , Receptores AMPA/fisiología
16.
Cereb Cortex Commun ; 2(1): tgab007, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33738453

RESUMEN

The onset of several neuropsychiatric disorders including anxiety disorders coincides with adolescence. Consistently, threat extinction, which plays a key role in the regulation of anxiety-related behaviors, is diminished during adolescence. Furthermore, this attenuated threat extinction during adolescence is associated with an altered synaptic plasticity in the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for threat extinction. However, the mechanism underlying the altered plasticity in the IL-mPFC during adolescence is unclear. Given the purported role of vasoactive intestinal polypeptide expressing interneurons (VIPINs) in disinhibition and hence their potential to affect cortical plasticity, we examined whether VIPINs exhibit an adolescence-specific plasticity in the IL-mPFC. We observed an increase in GABAergic transmission and a decrease in excitability in VIPINs during adolescence. Male mice show a significantly higher VIPIN-pyramidal neuron GABAergic transmission compared with female mice. The observed increase in GABAergic transmission and a decrease in membrane excitability in VIPINs during adolescence could play a role in the altered plasticity in the adolescent IL-mPFC. Furthermore, the suppression of VIPIN-mediated GABAergic transmission in females might be relevant to sex differences in anxiety disorders.

17.
J Neurosci Res ; 88(16): 3447-56, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20936698

RESUMEN

Scaffolding proteins play a critical role in the proper development and function of neural circuits. In contrast to the case for excitatory circuits, in which the role of several scaffolding proteins has been characterized, less is known about the scaffolding proteins that regulate inhibitory neurotransmission. The ankyrin repeat-rich membrane spanning (ARMS)/kinase D-interacting substrate of 220 kDa (Kidins220) scaffolding protein is expressed during the establishment of γ-aminobutyric acid (GABA) neurotransmission and is highly regulated by activity. To evaluate whether ARMS/Kidins220 expression affects GABAergic neurotransmission, we modified the ARMS/Kidins220 levels during the period of its maximum expression in culture (DIV 1-10). Whereas a decrease in ARMS/Kidins220 levels suppressed GABAergic neurotransmission, overexpression of ARMS/Kidins220 produced an increase in GABAergic neurotransmission in hippocampal neurons. In addition, we found that ARMS/Kidins220 regulates GABAergic neurotransmission by a presynaptic mechanism. Our results suggest that the ARMS/Kidins220 scaffold protein plays a critical role in the regulation of inhibitory transmission in hippocampal neurons.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Repetición de Anquirina , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología
18.
Nat Neurosci ; 9(8): 1009-18, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16819522

RESUMEN

Brain-derived neurotrophic factor (BDNF) has been implicated in higher-order cognitive functions and in psychiatric disorders such as depression and schizophrenia. BDNF modulates synaptic transmission and plasticity primarily through the TrkB receptor, but the molecules involved in BDNF-mediated synaptic modulation are largely unknown. Myosin VI (Myo6) is a minus end-directed actin-based motor found in neurons that express Trk receptors. Here we report that Myo6 and a Myo6-binding protein, GIPC1, form a complex that can engage TrkB. Myo6 and GIPC1 were necessary for BDNF-TrkB-mediated facilitation of long-term potentiation in postnatal day 12-13 (P12-13) hippocampus. Moreover, BDNF-mediated enhancement of glutamate release from presynaptic terminals depended not only upon TrkB but also upon Myo6 and GIPC1. Similar defects in basal synaptic transmission as well as presynaptic properties were observed in Myo6 and GIPC1 mutant mice. Together, these results define an important role for the Myo6-GIPC1 motor complex in presynaptic function and in BDNF-TrkB-mediated synaptic plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Neuropéptidos/metabolismo , Transmisión Sináptica/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos , Cadenas Pesadas de Miosina/genética , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/ultraestructura , Neuropéptidos/genética , Técnicas de Placa-Clamp , Ratas , Receptor trkB/metabolismo , Sinapsis/fisiología
19.
Neuropsychopharmacology ; 44(10): 1828-1836, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31005058

RESUMEN

The medial habenula-interpeduncular nucleus (MHb-IPN) pathway has recently been implicated in the suppression of fear memory. A notable feature of this pathway is the corelease of neurotransmitters and neuropeptides from MHb neurons. Our studies in mice reveal that an activation of substance P-positive dorsomedial habenula (dMHb) neurons results in simultaneous release of glutamate and glycine in the lateral interpeduncular nucleus (LIPN). This glycine receptor activity inhibits an activity-dependent long-lasting potentiation of glutamatergic synapses in LIPN neurons, while substance P enhances this plasticity. An endocannabinoid CB1 receptor-mediated suppression of GABAB receptor activity allows substance P to induce a long-lasting increase in glutamate release in LIPN neurons. Consistent with the substance P-dependent synaptic potentiation in the LIPN, the NK1R in the IPN is involved in fear extinction but not fear conditioning. Thus, our study describes a novel plasticity mechanism in the LIPN and a region-specific role of substance P in fear extinction.


Asunto(s)
Glicina/metabolismo , Habénula/metabolismo , Núcleo Interpeduncular/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Sustancia P/metabolismo , Animales , Fenómenos Electrofisiológicos , Ácido Glutámico/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Potenciación a Largo Plazo/fisiología , Ratones , Receptor Cannabinoide CB1/metabolismo , Receptores de GABA-B/metabolismo , Receptores de Neuroquinina-1/metabolismo , Transmisión Sináptica
20.
Biol Psychiatry ; 86(9): 682-692, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235076

RESUMEN

BACKGROUND: Rodents and humans show an attenuation of fear extinction during adolescence, which coincides with the onset of several psychiatric disorders. Although the ethological relevance and the underlying mechanism are largely unknown, the suppression of fear extinction during adolescence is associated with a diminished plasticity in the glutamatergic neurons of the infralimbic medial prefrontal cortex, a brain region critical for fear extinction. Given the putative effect of synaptic inhibition on glutamatergic neuron activity, we studied whether gamma-aminobutyric acidergic neurons in the infralimbic medial prefrontal cortex are involved in the suppression of fear extinction during adolescence. METHODS: We assessed membrane and synaptic properties in parvalbumin-positive interneurons (PVINs) and somatostatin-positive interneurons (SSTINs) in male preadolescent, adolescent, and adult mice. The effect of fear conditioning and extinction on PVIN-pyramidal neuron and SSTIN-pyramidal neuron synapses in male preadolescent, adolescent, and adult mice was evaluated using an optogenetic approach. RESULTS: The development of the membrane excitability of PVINs is delayed and reaches maturity only by adulthood, while the SSTIN membrane properties are developed early and remain stable during development from preadolescence to adulthood. Although the synaptic inhibition mediated by PVINs undergoes a protracted development, it does not exhibit a fear behavior-specific plasticity. However, the synaptic inhibition mediated by SSTINs undergoes an adolescence-specific enhancement, and this increased inhibition is suppressed by fear learning but is not restored by extinction training. This altered plasticity during adolescence overlapped with a reduction in calcium-permeable glutamate receptors in SSTINs. CONCLUSIONS: The adolescence-specific plasticity in the SSTINs might play a role in fear extinction suppression during adolescence in mice.


Asunto(s)
Extinción Psicológica , Interneuronas/fisiología , Sistema Límbico/crecimiento & desarrollo , Plasticidad Neuronal , Corteza Prefrontal/crecimiento & desarrollo , Animales , Miedo , Inhibición Psicológica , Sistema Límbico/citología , Sistema Límbico/fisiología , Masculino , Ratones , Optogenética , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA