Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(32): 17700-17709, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37527512

RESUMEN

In photoelectrochemical cells (PECs) the photon-to-current conversion efficiency is often governed by carrier transport. Most metal oxides used in PECs exhibit thermally activated transport due to charge localization via the formation of polarons or the interaction with defects. This impacts catalysis by restricting the charge accumulation and extraction. To overcome this transport bottleneck nanostructuring, selective doping and photothermal treatments have been employed. Here we demonstrate an alternative approach capable of directly activating localized carriers in bismuth vanadate (BiVO4). We show that IR photons can optically excite localized charges, modulate their kinetics, and enhance the PEC current. Moreover, we track carriers bound to oxygen vacancies and expose their ∼10 ns charge localization, followed by ∼60 µs transport-assisted trapping. Critically, we demonstrate that localization is strongly dependent on the electric field within the device. While optical modulation has still a limited impact on overall PEC performance, we argue it offers a path to control devices on demand and uncover defect-related photophysics.

2.
Angew Chem Int Ed Engl ; 62(48): e202311645, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37819601

RESUMEN

As a novel class of materials, D-A conjugated macrocycles hold significant promise for chemical science. However, their potential in photovoltaic remains largely untapped due to the complexity of introducing multiple donor and acceptor moieties into the design and synthesis of cyclic π-conjugated molecules. Here, we report a multiple D-A ring-like conjugated molecule (RCM) via the coupling of dimer molecule DBTP-C3 as a template and thiophenes in high yields. RCM exhibits a narrow optical gap (1.33 eV) and excellent thermal stability, and shows a remarkable photoluminescence yield (ΦPL ) of 11.1 % in solution, much higher than non-cyclic analogues. Organic solar cell (OSC) constructed with RCM as electron acceptor shows efficient charge separation at donor-acceptor band offsets and achieves a power conversion efficiency (PCE) of 14.2 %-approximately fourfold higher than macrocycle-based OSCs reported so far. This is partly due to low non-radiative voltage loss down to 0.20 eV and a high electroluminescence yield (ΦEL ) of 4×10-4 . Our findings emphasize the potential of D-A cyclic conjugated molecules in advancing organic photovoltaic technology.

3.
Opt Lett ; 46(10): 2376-2379, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988587

RESUMEN

With the recently developed single-shot time-stretch dispersive Fourier transform technique, we investigate the buildup process of an all-polarization-maintaining soliton mode-locked fiber laser. Considering the multi-pulse competitions and the evolution of the survived pulse, we find an optimal range of intra-cavity energy for self-starting related to the saturation energy of the employed saturable absorber. Under the conditions, one dominant pulse can build up quickly against the others, and it finally drives to single-pulse operation. The conclusions drawn here hold for other soliton mode-locked lasers.

4.
Nat Commun ; 14(1): 8000, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044384

RESUMEN

Conventional spectroscopies are not sufficiently selective to comprehensively understand the behaviour of trapped carriers in perovskite solar cells, particularly under their working conditions. Here we use infrared optical activation spectroscopy (i.e., pump-push-photocurrent), to observe the properties and real-time dynamics of trapped carriers within operando perovskite solar cells. We compare behaviour differences of trapped holes in pristine and surface-passivated FA0.99Cs0.01PbI3 devices using a combination of quasi-steady-state and nanosecond time-resolved pump-push-photocurrent, as well as kinetic and drift-diffusion models. We find a two-step trap-filling process: the rapid filling (~10 ns) of low-density traps in the bulk of perovskite, followed by the slower filling (~100 ns) of high-density traps at the perovskite/hole transport material interface. Surface passivation by n-octylammonium iodide dramatically reduces the number of trap states (~50 times), improving the device performance substantially. Moreover, the activation energy (~280 meV) of the dominant hole traps remains similar with and without surface passivation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA