Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Hepatol ; 73(4): 906-917, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32407813

RESUMEN

BACKGROUND & AIMS: Neutrophils are one of the most abundant components in human hepatocellular carcinoma (HCC) and have been shown to play important roles in regulating disease progression. However, neutrophils are very short-lived cells in circulation, and mechanisms regulating their accumulation and functions in HCC are not yet fully understood. METHODS: Monocytes were purified from non-tumor or paired tumor tissues of patients with HCC, and their production of neutrophil-attracting chemokines was evaluated. Mechanisms regulating the expression of CXCL2/8 by tumor monocytes, and the role of tumor monocyte-derived chemokines and cytokines in modulating neutrophil accumulation and functions were studied with both ex vivo analyses and in vitro experiments. RESULTS: Monocyte-derived CXCL2 and CXCL8 were major factors in regulating the recruitment of neutrophils into tumor milieus. These chemokines, in addition to tumor-derived soluble factors, could inhibit apoptosis and sustain survival of neutrophils, thus leading to neutrophil accumulation in tumor tissues. Moreover, monocyte-derived TNF-α acted synergistically with tumor-derived soluble factors to induce the production of the pro-metastasis factor OSM by neutrophils. Further, the glycolytic switch in tumor-infiltrating monocytes mediated their production of CXCL2 and CXCL8 via the PFKFB3-NF-κB signaling pathway. Accordingly, levels of PFKFB3, CXCL2/CXCL8 production in monocytes and infiltration of OSM-producing neutrophils were positively correlated in human HCC tissues. CONCLUSIONS: Our results unveiled a previously unappreciated link between monocytes and neutrophils in human HCC, identifying possible targets that could be therapeutically exploited in the future. LAY SUMMARY: Neutrophils constitute a major but poorly understood component of human hepatocellular carcinoma (HCC). Herein, we unveil a novel mechanism by which metabolic switching in monocytes promotes the accumulation of neutrophils in the tumors of patients with HCC. Both monocyte-produced chemokines and signals from the tumor microenvironment promote the production of the pro-metastatic factor OSM by neutrophils. These data identify potential targets for immune-based anticancer therapies for HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Glucólisis/fisiología , Neoplasias Hepáticas/metabolismo , Monocitos/metabolismo , Neutrófilos/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Monocitos/patología , Neutrófilos/patología , Estudios Retrospectivos , Transducción de Señal
2.
J Hepatol ; 71(2): 333-343, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071366

RESUMEN

BACKGROUND & AIMS: Programmed cell death 1 ligand 1 (PD-L1) expression on antigen-presenting cells is essential for T cell impairment, and PD-L1-expressing macrophages may mechanistically shape and therapeutically predict the clinical efficacy of PD-L1 or programmed cell death 1 blockade. We aimed to elucidate the mechanisms underlying PD-L1 upregulation in human tumor microenvironments, which remain poorly understood despite the clinical success of immune checkpoint inhibitors. METHODS: Monocytes/macrophages were purified from peripheral blood, non-tumor, or paired tumor tissues of patients with hepatocellular carcinoma (HCC), and their possible glycolytic switch was evaluated. The underlying regulatory mechanisms and clinical significance of metabolic switching were studied with both ex vivo analyses and in vitro experiments. RESULTS: We found that monocytes significantly enhanced the levels of glycolysis at the peritumoral region of human HCC. The activation of glycolysis induced PD-L1 expression on these cells and subsequently attenuated cytotoxic T lymphocyte responses in tumor tissues. Mechanistically, tumor-derived soluble factors, including hyaluronan fragments, induced the upregulation of a key glycolytic enzyme, PFKFB3, in tumor-associated monocytes. This enzyme not only modulated the cellular metabolic switch but also mediated the increased expression of PD-L1 by activating the nuclear factor kappa B signaling pathway in these cells. Consistently, the levels of PFKFB3+CD68+ cell infiltration in peritumoral tissues were negatively correlated with overall survival and could serve as an independent prognostic factor for survival in patients with HCC. CONCLUSIONS: Our results reveal a mechanism by which the cellular metabolic switch regulates the pro-tumor functions of monocytes in a specific human tumor microenvironment. PFKFB3 in both cancer cells and tumor-associated monocytes is a potential therapeutic target in human HCC. LAY SUMMARY: Programmed cell death 1 ligand 1 (PD-L1) expressed on antigen-presenting cells, rather than tumor cells, has been reported to play an essential role in checkpoint blockade therapy. A fundamental understanding of mechanisms that regulate the expression of PD-L1 on tumor-infiltrating monocytes/macrophages will undoubtedly lead to the possibility of developing novel PD-L1 blockade strategies with high specificity and efficiency. The current study unveils a novel mechanism by which metabolic switching links immune activation responses to immune tolerance in the tumor milieu, identifying potential targets for future immune-based anti-cancer therapies.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/inmunología , Glucólisis , Privilegio Inmunológico , Neoplasias Hepáticas/inmunología , Monocitos/metabolismo , Fosfofructoquinasa-2/metabolismo , Adulto , Anciano , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Linfocitos T CD8-positivos/inmunología , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Células Hep G2 , Humanos , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/patología , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Microambiente Tumoral/inmunología , Adulto Joven
3.
Korean J Physiol Pharmacol ; 23(3): 161-169, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31080347

RESUMEN

Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.

4.
Med Sci Monit ; 22: 2386-91, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27391418

RESUMEN

BACKGROUND We aimed to investigate the potential genetic relationships between the polymorphisms of gene rs5498 ICAM-1 and rs1041163 VCAM-1 and chronic periodontitis in a Chinese population within Heilongjiang. MATERIAL AND METHODS Genomic DNA was extracted from oral mucosa cells of 584 periodontal patients and 182 healthy individuals. Genotyping of the rs5498 ICAM-1 and rs1041163 VCAM-1 gene polymorphisms was performed with the Multiplex SNaPshot technique. RESULTS Statistically significant associations were identified between the chronic periodontal patients and the controls in the gene polymorphisms of rs5498 ICAM-1 (P=0.007) and rs1041163 VCAM-1 (P=0.029). The distribution of rs5498 (P=0.029) and rs1041163 (P=0.049) differed significantly across the mild, moderate, and severe groups of periodontitis. CONCLUSIONS Our findings indicate that ICAM-1 rs5498 and VCAM-1 rs1041163 polymorphisms contribute to chronic periodontitis, and ICAM-1 rs5498 and VCAM-1 rs1041163 gene polymorphisms might be associated with periodontitis severity in the Heilongjiang Chinese population. Further studies should be conducted to determine whether these polymorphisms could be used as biomarkers of periodontitis.


Asunto(s)
Molécula 1 de Adhesión Intercelular/genética , Enfermedades Periodontales/genética , Molécula 1 de Adhesión Celular Vascular/genética , Adulto , Pueblo Asiatico/genética , Estudios de Casos y Controles , China/epidemiología , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Periodontales/epidemiología , Polimorfismo de Nucleótido Simple , Factores de Riesgo
5.
Heliyon ; 10(10): e31380, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803927

RESUMEN

Objective: Our aim was to develop and validate a nomogram for predicting the in-hospital 14-day (14 d) and 28-day (28 d) survival rates of patients with coronavirus disease 2019 (COVID-19). Methods: Clinical data of patients with COVID-19 admitted to the Renmin Hospital of Wuhan University from December 2022 to February 2023 and the north campus of Shanghai Ninth People's Hospital from April 2022 to June 2022 were collected. A total of 408 patients from Renmin Hospital of Wuhan University were selected as the training cohort, and 151 patients from Shanghai Ninth People's Hospital were selected as the verification cohort. Independent variables were screened using Cox regression analysis, and a nomogram was constructed using R software. The prediction accuracy of the nomogram was evaluated using the receiver operating characteristic (ROC) curve, C-index, and calibration curve. Decision curve analysis was used to evaluate the clinical application value of the model. The nomogram was externally validated using a validation cohort. Result: In total, 559 patients with severe/critical COVID-19 were included in this study, of whom 179 (32.02 %) died. Multivariate Cox regression analysis showed that age >80 years [hazard ratio (HR) = 1.539, 95 % confidence interval (CI): 1.027-2.306, P = 0.037], history of diabetes (HR = 1.741, 95 % CI: 1.253-2.420, P = 0.001), high APACHE II score (HR = 1.083, 95 % CI: 1.042-1.126, P < 0.001), sepsis (HR = 2.387, 95 % CI: 1.707-3.338, P < 0.001), high neutrophil-to-lymphocyte ratio (NLR) (HR = 1.010, 95 % CI: 1.003-1.017, P = 0.007), and high D-dimer level (HR = 1.005, 95 % CI: 1.001-1.009, P = 0.028) were independent risk factors for 14 d and 28 d survival rates, whereas COVID-19 vaccination (HR = 0.625, 95 % CI: 0.440-0.886, P = 0.008) was a protective factor affecting prognosis. ROC curve analysis showed that the area under the curve (AUC) of the 14 d and 28 d hospital survival rates in the training cohort was 0.765 (95 % CI: 0.641-0.923) and 0.814 (95 % CI: 0.702-0.938), respectively, and the AUC of the 14 d and 28 d hospital survival rates in the verification cohort was 0.898 (95 % CI: 0.765-0.962) and 0.875 (95 % CI: 0.741-0.945), respectively. The calibration curves of 14 d and 28 d hospital survival showed that the predicted probability of the model agreed well with the actual probability. Decision curve analysis (DCA) showed that the nomogram has high clinical application value. Conclusion: In-hospital survival rates of patients with COVID-19 were predicted using a nomogram, which will help clinicians in make appropriate clinical decisions.

6.
Front Neurosci ; 17: 1293161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027495

RESUMEN

The Group Sparse Representation (GSR) model shows excellent potential in various image restoration tasks. In this study, we propose a novel Multi-Scale Group Sparse Residual Constraint Model (MS-GSRC) which can be applied to various inverse problems, including denoising, inpainting, and compressed sensing (CS). Our new method involves the following three steps: (1) finding similar patches with an overlapping scheme for the input degraded image using a multi-scale strategy, (2) performing a group sparse coding on these patches with low-rank constraints to get an initial representation vector, and (3) under the Bayesian maximum a posteriori (MAP) restoration framework, we adopt an alternating minimization scheme to solve the corresponding equation and reconstruct the target image finally. Simulation experiments demonstrate that our proposed model outperforms in terms of both objective image quality and subjective visual quality compared to several state-of-the-art methods.

7.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36849198

RESUMEN

BACKGROUND: Effects of immune checkpoint blockade (ICB) treatment in hepatocellular carcinoma (HCC) are limited. The current study explored the possibility of exploiting tumor metabolic switches to enhance HCC sensitivity to immune therapies. METHODS: Levels of one-carbon (1C) metabolism and the expression of phosphoserine phosphatase (PSPH), an upstream enzyme of 1C pathway, were evaluated in paired non-tumor and tumor tissues from HCC. Underlying mechanisms mediating the role of PSPH in regulating the infiltration of monocytes/macrophages and CD8+ T lymphocytes were studied through both in vitro and in vivo experiments. RESULTS: PSPH was significantly upregulated in tumor tissues of HCC and its levels were positively correlated with disease progression. PSPH knockdown inhibited tumor growth in immunocompetent mice, but not in those with macrophage or T lymphocyte deficiencies, indicating the pro-tumor effects of PSPH were dependent on both immune components. Mechanistically, PSPH facilitated monocytes/macrophages infiltration by inducing the production of C-C motif chemokine 2 (CCL2), while at the same time reduced CD8+ T lymphocytes recruitment through inhibiting the production of C-X-C Motif Chemokine 10 (CXCL10) in tumor necrosis factor alpha (TNF-α)-conditioned cancer cells. Glutathione and S-adenosyl-methionine were partially involved in regulating the production of CCL2 and CXCL10, respectively. shPSPH (short hairpin RNA) transfection of cancer cells enhanced tumor sensitivity to anti-programmed cell death protein 1 (PD-1) therapy in vivo, and interestingly, metformin could inhibit PSPH expression in cancer cells and mimic the effects of shPSPH in sensitizing tumors to anti-PD-1 treatment. CONCLUSIONS: By tilting the immune balance towards a tumor-friendly composition, PSPH might be useful both as a marker in stratifying patients for ICB therapy, and as an attractive therapeutic target in the treatment of human HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Regulación hacia Abajo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico
8.
Front Bioeng Biotechnol ; 11: 1056707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873351

RESUMEN

Background: The treatment of bone defects remains a clinical challenge. The effect of negative pressure wound therapy (NPWT) on osteogenesis in bone defects has been recognized; however, bone marrow fluid dynamics under negative pressure (NP) remain unknown. In this study, we aimed to examine the marrow fluid mechanics within trabeculae by computational fluid dynamics (CFD), and to verify osteogenic gene expression, osteogenic differentiation to investigate the osteogenic depth under NP. Methods: The human femoral head is scanned using micro-CT to segment the volume of interest (VOI) trabeculae. The VOI trabeculae CFD model simulating the bone marrow cavity is developed by combining the Hypermesh and ANSYS software. The effect of trabecular anisotropy is investigated, and bone regeneration effects are simulated under NP scales of -80, -120, -160, and -200 mmHg. The working distance (WD) is proposed to describe the suction depth of the NP. Finally, gene sequence analysis, cytological experiments including bone mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation are conducted after the BMSCs are cultured under the same NP scale. Results: The pressure, shear stress on trabeculae, and marrow fluid velocity decrease exponentially with an increase in WD. The hydromechanics of fluid at any WD inside the marrow cavity can be theoretically quantified. The NP scale significantly affects the fluid properties, especially those fluid close to the NP source; however, the effect of the NP scale become marginal as WD deepens. Anisotropy of trabecular structure coupled with the anisotropic hydrodynamic behavior of bone marrow; An NP of -120 mmHg demonstrates the majority of bone formation-related genes, as well as the most effective proliferation and osteogenic differentiation of BMSCs compared to the other NP scales. Conclusion: An NP of -120 mmHg may have the optimal activated ability to promote osteogenesis, but the effective WD may be limited to a certain depth. These findings help improve the understanding of fluid mechanisms behind NPWT in treating bone defects.

9.
Diagnostics (Basel) ; 12(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36292251

RESUMEN

Objective: A nomograph model of mortality risk for patients with coronavirus disease 2019 (COVID-19) was established and validated. Methods: We collected the clinical medical records of patients with severe/critical COVID-19 admitted to the eastern campus of Renmin Hospital of Wuhan University from January 2020 to May 2020 and to the north campus of Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, from April 2022 to June 2022. We assigned 254 patients to the former group, which served as the training set, and 113 patients were assigned to the latter group, which served as the validation set. The least absolute shrinkage and selection operator (LASSO) and multivariable logistic regression were used to select the variables and build the mortality risk prediction model. Results: The nomogram model was constructed with four risk factors for patient mortality following severe/critical COVID-19 (≥3 basic diseases, APACHE II score, urea nitrogen (Urea), and lactic acid (Lac)) and two protective factors (percentage of lymphocyte (L%) and neutrophil-to-platelets ratio (NPR)). The area under the curve (AUC) of the training set was 0.880 (95% confidence interval (95%CI), 0.837~0.923) and the AUC of the validation set was 0.814 (95%CI, 0.705~0.923). The decision curve analysis (DCA) showed that the nomogram model had high clinical value. Conclusion: The nomogram model for predicting the death risk of patients with severe/critical COVID-19 showed good prediction performance, and may be helpful in making appropriate clinical decisions for high-risk patients.

10.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362480

RESUMEN

Macrophages constitute a major immune component in tumor tissues, but how these cells adapt to and survive in the nutrient-depleted and lactic acid-induced acidic tumor microenvironments is not yet fully understood. Here, we found that levels of carbonic anhydrase XII (CA12) expression were significantly and selectively upregulated on macrophages in human hepatocellular carcinoma (HCC). Transient glycolytic activation of peritumoral monocytes induced sustained expression of CA12 on tumor-infiltrating macrophages via autocrine cytokines and HIF1α pathways. On the one hand, CA12 mediated the survival of macrophages in relatively acidic tumor microenvironments, while on the other hand, it induced macrophage production of large amounts of C-C motif chemokine ligand 8 (CCL8), which enhanced cancer cell epithelial-mesenchymal transition (EMT) and facilitated tumor metastasis. Consistently, the accumulation of CA12+ macrophages in tumor tissues was associated with increased tumor metastatic potential and reduced survival of patients with HCC. Selective targeting of tumor-infiltrating macrophages with a CA12 inhibitor reduced tumor growth in mice and was sufficient to synergistically enhance the therapeutic efficacy of immune-checkpoint blockade. We suggest that CA12 activity is a previously unappreciated mechanism regulating the accumulation and functions of macrophages in tumor microenvironments and therefore represents a selective vulnerability that could be exploited in future designs for antitumor immunotherapeutic strategies.


Asunto(s)
Anhidrasas Carbónicas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Ratones , Microambiente Tumoral
11.
Oncoimmunology ; 11(1): 2052418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309732

RESUMEN

Neutrophils constitute a major component in human hepatocellular carcinoma (HCC) and can facilitate disease progression via poorly understood mechanisms. Here, we show that neutrophil extracellular traps (NETs) formation was increased in human HCC tumor tissues than in paired non-tumor liver tissues. Mechanism study revealed that tumor-induced metabolic switch toward glycolysis and pentose phosphate pathway in tumor infiltrating neutrophils promoted NETs formation in a reactive oxygen species dependent-manner. NETs subsequently induced the migration of cancer cells and down-regulation of tight junction molecules on adjacent endothelial cells, thus facilitating tumor intravasation and metastasis. Accordingly, NETs depletion could inhibit tumor metastasis in mice in vivo, and the infiltration levels of NETs-releasing neutrophils were negatively associated with patient survival and positively correlated with tumor metastasis potential of HCC patients. Our results unveiled a pro-metastatic role of NETs in the milieu of human HCC, and pointed to the importance of metabolic reprogramming in shaping their characteristics, thus providing an applicable efficient target for anti-cancer therapies.


Asunto(s)
Carcinoma Hepatocelular , Trampas Extracelulares , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Trampas Extracelulares/metabolismo , Humanos , Neoplasias Hepáticas/secundario , Ratones , Neutrófilos
12.
Front Chem ; 7: 660, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632952

RESUMEN

Three-dimensional (3D) graphene-based hydrogels have attracted great interest for applying in supercapcacitors electrodes, owing to their intriguing properties that combine the structural interconnectivities and the outstanding properties of graphene. However, the pristine graphene hydrogel can not satisfy the high-performance demands, especial in high specific capacitance. Consequently, novel graphene-based composite hydrogels with increased electrochemical properties have been developed. In this mini review, a brief summary of recent progress in the research of the three-dimensional graphene-based composite hydrogel for flexible supercapacitors electrodes materials is presented. The latest progress in the graphene-based composite hydrogel consisting of graphene/metal, graphene/polymer, and atoms doped graphene is discussed. Furthermore, future perspectives and challenges in graphene-based composite hydrogel for supercapacitor electrodes are also expressed.

13.
Autophagy ; 14(8): 1335-1346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29940792

RESUMEN

Macroautophagy/autophagy is an important catabolic process mediating cellular homeostasis and plays critical roles in cancer development. Whereas autophagy has been widely studied in various pathological models, little is known about the distribution, clinical significance and regulatory mechanism of this process in human hepatocellular carcinoma (HCC). In the present study, we found that tumor tissues exhibited significantly increased levels of autophagy compared with non-tumor tissues, and cancer cells with higher levels of autophagy were predominantly enriched in the invading edge regions of human HCC. Increased MAP1LC3B/LC3B expression in the invading edge regions was significantly correlated with a higher density of closely located monocytes, and TNF and IL1B derived from tumor-activated monocytes synergistically induced cancer cell autophagy in the invading edge regions of HCC. Monocyte-elicited autophagy induced the epithelial-mesenchymal transition (EMT) of cancer cells and promoted tumor metastasis by activating the NFKB-SNAI1 signaling pathway. Moreover, the increase of LC3B+ cancer cells in the invading edge areas was associated with high mortality and reduced survival of patients with HCC. These findings indicated that cancer cell autophagy is regulated by a collaborative interaction between tumor and immune cell components in distinct HCC microenvironments, thus allowing the inflammatory monocytes to be rerouted in a tumor-promoting direction.


Asunto(s)
Autofagia , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Neoplasias Hepáticas/patología , Monocitos/patología , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/ultraestructura , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Interleucina-1beta/farmacología , Neoplasias Hepáticas/ultraestructura , Masculino , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Monocitos/ultraestructura , Análisis Multivariante , FN-kappa B/metabolismo , Recurrencia Local de Neoplasia/patología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción de la Familia Snail/metabolismo , Solubilidad , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos
14.
Zootaxa ; 4179(2): 209-224, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27811669

RESUMEN

Two new species of turbellarians, Bothrioplana sinensis n. sp., and Pentacoelum sinensis n. sp., were described based on their reproductive behavior, ontogenic development, morphology in whole-mounted and sectioned specimens, and 18S rDNA phylogenetic classification. Bothrioplana sinensis n. sp. represents a newly recorded order in China and the second identified species in the genus Bothrioplana. It is characterized by a pair of spherical-shaped well-developed testes located dorsally behind the pharynx, and the common vas deference located ventrally to the gonopore. Phylogenetic analysis showed that this new species is closely related to parasitic flatworms. Pentacoelum sinensis n. sp. is characterized by two uteri instead of lateral bursae located laterally near the tail end and a lack of connection between the posterior intestinal branches. Each uterus has a ventral receptaculum seminalis (also functioning as bursa copulatrix) which has a muscular vagina externa opening obliquely to the ventral side at the tail end.


Asunto(s)
Platelmintos/anatomía & histología , Platelmintos/clasificación , Animales , China , ADN Ribosómico/genética , Organismos Hermafroditas , Filogenia , Platelmintos/genética , Especificidad de la Especie
15.
Nanoscale Res Lett ; 10: 208, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25995711

RESUMEN

Cobalt oxide (Co3O4) was homogeneously coated on multiwalled carbon nanotube through a simple chemical deposition method and employed in supercapacitor electrodes. SEM image indicated the uniform distribution of Co3O4 nanoparticles on the surface of the multiwalled carbon nanotube. A maximum specific capacitance of 273 Fg(-1) was obtained at the charge-discharge current density of 0.5 Ag(-1). After 500 cycles of continuous charge-discharge process, about 88% of the initial capacity could be retained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA