Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 38(6): e23547, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38498368

RESUMEN

Proteoglycan 4 (PRG4) is a boundary lubricant originally identified in articular cartilage and has been since shown to have immunomodulation and antifibrotic properties. Previously, we have demonstrated that recombinant human (rh)PRG4 treatment accelerates auricular cartilage injury closure through an inhibition of the fibrotic response, and promotion of tissue regeneration in mice. The purpose of the current study was to examine the effects of rhPRG4 treatment (vs. a DMSO carried control) on full-thickness skin wound healing in a preclinical porcine model. Our findings suggest that while rhPRG4 did not significantly accelerate nor impede full-thickness skin wound closure, it did improve repair quality by decreasing molecular markers of fibrosis and increasing re-vascularization. We also demonstrated that rhPRG4 treatment increased dermal adipose tissue during the healing process specifically by retaining adipocytes in the wound area but did not inhibit lipolysis. Overall, the results of the current study have demonstrated that rhPRG4 acts as antifibrotic agent and regulates dermal adipose tissue during the healing processes resulting in a tissue with a trajectory that more resembles the native skin vs. a fibrotic patch. This study provides strong rationale to examine if rhPRG4 can improve regeneration in human wounds.


Asunto(s)
Cartílago Articular , Proteoglicanos , Porcinos , Humanos , Animales , Ratones , Proteoglicanos/farmacología , Piel
2.
Genome Res ; 29(8): 1211-1222, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31249064

RESUMEN

We investigated the role of 3D genome architecture in instructing functional properties of glioblastoma stem cells (GSCs) by generating sub-5-kb resolution 3D genome maps by in situ Hi-C. Contact maps at sub-5-kb resolution allow identification of individual DNA loops, domain organization, and large-scale genome compartmentalization. We observed differences in looping architectures among GSCs from different patients, suggesting that 3D genome architecture is a further layer of inter-patient heterogeneity for glioblastoma. Integration of DNA contact maps with chromatin and transcriptional profiles identified specific mechanisms of gene regulation, including the convergence of multiple super enhancers to individual stemness genes within individual cells. We show that the number of loops contacting a gene correlates with elevated transcription. These results indicate that stemness genes are hubs of interaction between multiple regulatory regions, likely to ensure their sustained expression. Regions of open chromatin common among the GSCs tested were poised for expression of immune-related genes, including CD276 We demonstrate that this gene is co-expressed with stemness genes in GSCs and that CD276 can be targeted with an antibody-drug conjugate to eliminate self-renewing cells. Our results demonstrate that integrated structural genomics data sets can be employed to rationally identify therapeutic vulnerabilities in self-renewing cells.


Asunto(s)
Neoplasias Encefálicas/genética , Cromatina/ultraestructura , Mapeo Cromosómico/métodos , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Proteínas de Neoplasias/genética , Antígenos B7/antagonistas & inhibidores , Antígenos B7/genética , Antígenos B7/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Cromatina/química , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Heterogeneidad Genética , Genoma Humano , Genómica/métodos , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Terapia Molecular Dirigida , Proteínas de Neoplasias/clasificación , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transcripción Genética
3.
Cell Tissue Res ; 389(3): 483-499, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35704103

RESUMEN

Mesenchymal progenitor cells (MPCs) have been recently identified in human and murine epidural fat and have been hypothesized to contribute to the maintenance/repair/regeneration of the dura mater. MPCs can secrete proteoglycan 4 (PRG4/lubricin), and this protein can regulate tissue homeostasis through bio-lubrication and immunomodulatory functions. MPC lineage tracing reporter mice (Hic1) and human epidural fat MPCs were used to determine if PRG4 is expressed by these cells in vivo. PRG4 expression co-localized with Hic1+ MPCs in the dura throughout skeletal maturity and was localized adjacent to sites of dural injury. When Hic1+ MPCs were ablated, PRG4 expression was retained in the dura, yet when Prx1+ MPCs were ablated, PRG4 expression was completely lost. A number of cellular processes were impacted in human epidural fat MPCs treated with rhPRG4, and human MPCs contributed to the formation of epidural fat, and dura tissues were xenotransplanted into mouse dural injuries. We have shown that human and mouse MPCs in the epidural/dura microenvironment produce PRG4 and can contribute to dura homeostasis/repair/regeneration. Overall, these results suggest that these MPCs have biological significance within the dural microenvironment and that the role of PRG4 needs to be further elucidated.


Asunto(s)
Duramadre/metabolismo , Células Madre Mesenquimatosas , Proteoglicanos/metabolismo , Animales , Duramadre/citología , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones
4.
Stem Cell Res Ther ; 14(1): 168, 2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37357305

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a chronic debilitating disease impacting a significant percentage of the global population. While there are numerous surgical and non-invasive interventions that can postpone joint replacement, there are no current treatments which can reverse the joint damage occurring during the pathogenesis of the disease. While many groups are investigating the use of stem cell therapies in the treatment of OA, we still don't have a clear understanding of the role of these cells in the body, including heterogeneity of tissue resident adult mesenchymal progenitor cells (MPCs). METHODS: In the current study, we examined MPCs from the synovium and individuals with or without a traumatic knee joint injury and explored the chondrogenic differentiation capacity of these MPCs in vitro and in vivo. RESULTS: We found that there is heterogeneity of MPCs with the adult synovium and distinct sub-populations of MPCs and the abundancy of these sub-populations change with joint injury. Furthermore, only some of these sub-populations have the ability to effect cartilage repair in vivo. Using an unbiased proteomics approach, we were able to identify cell surface markers that identify this pro-chondrogenic MPC population in normal and injured joints, specifically CD82LowCD59+ synovial MPCs have robust cartilage regenerative properties in vivo. CONCLUSIONS: The results of this study clearly show that cells within the adult human joint can impact cartilage repair and that these sub-populations exist within joints that have undergone a traumatic joint injury. Therefore, these populations can be exploited for the treatment of cartilage injuries and OA in future clinical trials.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Cartílago Articular , Células Madre Mesenquimatosas , Osteoartritis , Adulto , Humanos , Lesiones del Ligamento Cruzado Anterior/metabolismo , Membrana Sinovial , Cartílago/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/patología , Fenotipo , Cartílago Articular/patología
5.
Nat Commun ; 14(1): 3062, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244935

RESUMEN

Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Histonas/genética , Histonas/metabolismo , Glioblastoma/metabolismo , Regulación Neoplásica de la Expresión Génica , Cromatina/metabolismo , Epigénesis Genética , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
6.
NPJ Regen Med ; 7(1): 32, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750773

RESUMEN

The wound healing response is one of most primitive and conserved physiological responses in the animal kingdom, as restoring tissue integrity/homeostasis can be the difference between life and death. Wound healing in mammals is mediated by immune cells and inflammatory signaling molecules that regulate tissue resident cells, including local progenitor cells, to mediate closure of the wound through formation of a scar. Proteoglycan 4 (PRG4), a protein found throughout the animal kingdom from fish to elephants, is best known as a glycoprotein that reduces friction between articulating surfaces (e.g. cartilage). Previously, PRG4 was also shown to regulate the inflammatory and fibrotic response. Based on this, we asked whether PRG4 plays a role in the wound healing response. Using an ear wound model, topical application of exogenous recombinant human (rh)PRG4 hastened wound closure and enhanced tissue regeneration. Our results also suggest that rhPRG4 may impact the fibrotic response, angiogenesis/blood flow to the injury site, macrophage inflammatory dynamics, recruitment of immune and increased proliferation of adult mesenchymal progenitor cells (MPCs) and promoting chondrogenic differentiation of MPCs to form the auricular cartilage scaffold of the injured ear. These results suggest that PRG4 has the potential to suppress scar formation while enhancing connective tissue regeneration post-injury by modulating aspects of each wound healing stage (blood clotting, inflammation, tissue generation and tissue remodeling). Therefore, we propose that rhPRG4 may represent a potential therapy to mitigate scar and improve wound healing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA