Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 108: 129803, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38777280

RESUMEN

Targeted delivery of radionuclides to tumors is significant in theranostics applications for precision medicine. Pre-targeting, in which a tumor-targeting vehicle and a radionuclide-loaded effector small molecule are administered separately, holds promise since it can reduce unnecessary internal radiation exposure of healthy cells and can minimize radiation decay. The success of the pre-targeting delivery requires an in vivo-stable tumor-targeting vehicle selectively binding to tumor antigens and an in vivo-stable small molecule effector selectively binding to the vehicle accumulated on the tumor. We previously reported a drug delivery system composed of a low-immunogenic streptavidin with weakened affinity to endogenous biotin and a bis-iminobiotin with high affinity to the engineered streptavidin. It was, however, unknown whether the bis-iminobiotin is stable in vivo when administered alone for the pre-targeting applications. Here we report a new in vivo-stable bis-iminobiotin derivative. The keys to success were the identification of the degradation site of the original bis-iminobiotin treated with mouse plasma and the structural modification of the degradation site. We disclosed the successful pre-targeting delivery of astatine-211 (211At), α-particle emitter, to the CEACAM5-positive tumor in xenograft mouse models.


Asunto(s)
Biotina , Estreptavidina , Animales , Estreptavidina/química , Ratones , Biotina/química , Humanos , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral , Mutación , Estructura Molecular
2.
J Biochem ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077792

RESUMEN

Nucleotide excision repair (NER) is a major DNA repair system and hereditary defects in this system cause critical genetic diseases (e.g., xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy). Various proteins are involved in the eukaryotic NER system and undergo several post-translational modifications. Damaged DNA-binding protein 2 (DDB2) is a DNA damage recognition factor in the NER pathway. We previously demonstrated that DDB2 was SUMOylated in response to UV irradiation; however, its physiological roles remain unclear. We herein analyzed several mutants and showed that the N-terminal tail of DDB2 was the target for SUMOylation; however, this region did not contain a consensus SUMOylation sequence. We found a SUMO-interacting motif (SIM) in the N-terminal tail that facilitated SUMOylation. The ubiquitination of a SUMOylation-deficient DDB2 SIM mutant was decreased and its retention of chromatin was prolonged. The SIM mutant showed impaired NER, possibly due to a decline in the timely handover of the lesion site to XPC. These results suggest that the SUMOylation of DDB2 facilitates NER through enhancements in ubiquitination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA