Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Genomics ; 23(1): 657, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115951

RESUMEN

BACKGROUND: Titinopathies are inherited muscular diseases triggered by genetic mutations in the titin gene. Muscular dystrophy with myositis (mdm) is one such disease caused by a LINE repeat insertion, leading to exon skipping and an 83-amino acid residue deletion in the N2A-PEVK region of mouse titin. This region has been implicated in a number of titin-titin ligand interactions, hence are important for myocyte signaling and health. Mice with this mdm mutation develop a severe and progressive muscle degeneration. The range of phenotypic differences observed in mdm mice shows that the deletion of this region induces a cascade of transcriptional changes extending to numerous signaling pathways affected by the titin filament. Previous research has focused on correlating phenotypic differences with muscle function in mdm mice. These studies have provided understanding of the downstream physiological effects resulting from the mdm mutation but only provide insights on processes that can be physiologically observed and measured. We used differential gene expression (DGE) to compare the transcriptomes of extensor digitorum longus (EDL), psoas and soleus muscles from wild-type and mdm mice to develop a deeper understand of these tissue-specific responses. RESULTS: The overall expression pattern observed shows a well-differentiated transcriptional signature in mdm muscles compared to wild type. Muscle-specific clusters observed within the mdm transcriptome highlight the level of variability of each muscle to the deletion. Differential gene expression and weighted gene co-expression network analysis showed a strong directional response in oxidative respiration-associated mitochondrial genes, which aligns with the poor shivering and non-shivering thermogenesis previously observed. Sln, which is a marker associated with shivering and non-shivering thermogenesis, showed the strongest expression change in fast-fibered muscles. No drastic changes in MYH expression levels were reported, which indicated an absence of major fiber-type switching events. Overall expression shifts in MYH isoforms, MARPs, and extracellular matrix associated genes demonstrated the transcriptional complexity associated with mdm mutation. The expression alterations in mitochondrial respiration and metabolism related genes in the mdm muscle dominated over other transcriptomic changes, and likely account for the late stage cellular responses in the mdm muscles. CONCLUSIONS: We were able to demonstrate that the complex nature of mdm mutation extends beyond a simple rearrangement in titin gene. EDL, psoas and soleus exemplify unique response modes observed in skeletal muscles with mdm mutation. Our data also raises the possibility that failure to maintain proper energy homeostasis in mdm muscles may contribute to the pathogenesis of the degenerative phenotype in mdm mice. Understanding the full disease-causing molecular cascade is difficult using bulk RNA sequencing techniques due to intricate nature of the disease. The development of the mdm phenotype is temporally and spatially regulated, hence future studies should focus on single fiber level investigations.


Asunto(s)
Distrofias Musculares , Miositis , Aminoácidos/genética , Animales , Conectina/genética , Conectina/metabolismo , Ligandos , Ratones , Músculo Esquelético/fisiología , Distrofias Musculares/genética , Distrofias Musculares/patología , Miositis/genética , Miositis/metabolismo , Miositis/patología , Transcriptoma
2.
J Exp Biol ; 225(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35514253

RESUMEN

Residual force enhancement (RFE) is the increase in steady-state force after active stretch relative to the force during isometric contraction at the same final length. The muscular dystrophy with myositis (mdm) mutation in mice, characterized by a small deletion in N2A titin, has been proposed to prevent N2A titin-actin interactions so that active mdm muscles are more compliant than wild type (WT). This decrease in active muscle stiffness is associated with reduced RFE. We investigated RFE in permeabilized soleus (SOL) and extensor digitorum longus (EDL) fiber bundles from WT and mdm mice. On each fiber bundle, we performed active and passive stretches from an average sarcomere length of 2.6-3.0 µm at a slow rate of 0.04 µm s-1, as well as isometric contractions at the initial and final lengths. One-way ANOVA showed that SOL and EDL fiber bundles from mdm mice exhibited significantly lower RFE than WT mice (P<0.0001). This result is consistent with previous observations in single myofibrils and intact muscles. However, it contradicts the results from a previous study that appeared to show that compensatory mechanisms could restore titin force enhancement in single fibers from mdm psoas. We suggest that RFE measured previously in mdm single fibers was an artifact of the high variability in passive tension found in degenerating fibers, which begins after ∼24 days of age. The results are consistent with the hypothesis that RFE is reduced in mdm skeletal muscles owing to impaired Ca2+-dependent titin-actin interactions resulting from the small deletion in N2A titin.


Asunto(s)
Actinas , Contracción Muscular , Animales , Conectina , Contracción Isométrica , Ratones , Músculo Esquelético/fisiología
3.
BMC Genomics ; 21(1): 808, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213377

RESUMEN

BACKGROUND: Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. RESULTS: EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. CONCLUSIONS: The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.


Asunto(s)
Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta , Animales , Ratones , Músculo Esquelético , Cadenas Pesadas de Miosina/genética , Transcriptoma
4.
J Exp Biol ; 223(Pt 2)2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31862847

RESUMEN

The active isometric force produced by muscles varies with muscle length in accordance with the force-length relationship. Compared with isometric contractions at the same final length, force increases after active lengthening (force enhancement) and decreases after active shortening (force depression). In addition to cross-bridges, titin has been suggested to contribute to force enhancement and depression. Although titin is too compliant in passive muscles to contribute to active tension at short sarcomere lengths on the ascending limb and plateau of the force-length relationship, recent evidence suggests that activation increases titin stiffness. To test the hypothesis that titin plays a role in force enhancement and depression, we investigated isovelocity stretching and shortening in active and passive wild-type and mdm (muscular dystrophy with myositis) soleus muscles. Skeletal muscles from mdm mice have a small deletion in the N2A region of titin and show no increase in titin stiffness during active stretch. We found that: (1) force enhancement and depression were reduced in mdm soleus compared with wild-type muscles relative to passive force after stretch or shortening to the same final length; (2) force enhancement and force depression increased with amplitude of stretch across all activation levels in wild-type muscles; and (3) maximum shortening velocity of wild-type and mdm muscles estimated from isovelocity experiments was similar, although active stress was reduced in mdm compared with wild-type muscles. The results of this study suggest a role for titin in force enhancement and depression, which contribute importantly to muscle force during natural movements.


Asunto(s)
Contracción Muscular/genética , Músculo Esquelético/fisiología , Mutación/genética , Proteínas Quinasas/genética , Animales , Fenómenos Biomecánicos , Femenino , Masculino , Ratones , Proteínas Quinasas/metabolismo
5.
J Exp Biol ; 222(Pt 12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31097600

RESUMEN

During isometric contractions, the optimal length of skeletal muscles increases with decreasing activation. The underlying mechanism for this phenomenon is thought to be linked to length dependence of Ca2+ sensitivity. Muscular dystrophy with myositis (mdm), a recessive titin mutation in mice, was used as a tool to study the role of titin in activation dependence of optimal length and length dependence of Ca2+ sensitivity. We measured the shift in optimal length between tetanic and twitch stimulation in mdm and wild-type muscles, and the length dependence of Ca2+ sensitivity at short and long sarcomere lengths in mdm and wild-type fiber bundles. The results indicate that the mdm mutation leads to a loss of activation dependence of optimal length without the expected change in length dependence of Ca2+ sensitivity, demonstrating that these properties are not linked, as previously suggested. Furthermore, mdm muscles produced maximum tetanic stress during sub-optimal filament overlap at lengths similar to twitch contractions in both genotypes, but the difference explains less than half of the observed reduction in active force of mdm muscles. Mdm muscles also exhibited increased electromechanical delay, contraction and relaxation times, and decreased rate of force development in twitch contractions. We conclude that the small deletion in titin associated with mdm in skeletal muscles alters force production, suggesting an important regulatory role for titin in active force production. The molecular mechanisms for titin's role in regulating muscle force production remain to be elucidated.


Asunto(s)
Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Proteínas Quinasas/genética , Animales , Secuencia de Bases , Ratones , Eliminación de Secuencia/genética
6.
J Exp Biol ; 222(Pt 9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31015287

RESUMEN

Muscular dystrophy with myositis (mdm) mice carry a deletion in the N2A region of the gene for the muscle protein titin (TTN), shiver at low frequency, fail to maintain body temperatures (Tb) at ambient temperatures (Ta) <34°C, and have reduced body mass and active muscle stiffness in vivo compared with wild-type (WT) siblings. Impaired shivering thermogenesis (ST) could be due to the mutated titin protein causing more compliant muscles. We hypothesized that non-shivering thermogenesis (NST) is impaired. To characterize the response to cold exposure, we measured Tb and metabolic rate (MR) of WT and mdm mice at four nominal temperatures: 20, 24, 29 and 34°C. Subsequently, we stimulated NST with noradrenaline. Manipulation of Ta revealed an interaction between genotype and MR: mdm mice had higher MRs at 29°C and lower MRs at 24°C compared with WT mice. NST capacity was lower in mdm mice than in WT mice. Using MR data from a previous study, we compared MR of mdm mice with MR of Perognathus longimembris, a mouse species of similar body mass. Our results indicated low MR and reduced NST of mdm mice. These were more pronounced than differences between mdm and WT mice owing to body mass effects on MR and capacity for NST. Correcting MR using Q10 showed that mdm mice had lower MRs than size-matched P. longimembris, indicating that mutated N2A titin causes severe thermoregulatory defects at all levels. Direct effects of the titin mutation lead to lower shivering frequency. Indirect effects likely lead to a lower capacity for NST and increased thermal conductance through decreased body size.


Asunto(s)
Metabolismo Basal , Ratones/fisiología , Proteínas Quinasas/genética , Termogénesis/genética , Animales , Proteínas Quinasas/metabolismo , Eliminación de Secuencia
7.
J Anat ; 232(2): 214-226, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29159806

RESUMEN

Dietary specialization is an important driver of the morphology and performance of the feeding system in many organisms, yet the evolution of phenotypic specialization has only rarely been examined within a species complex. Horned lizards are considered primarily myrmecophagous (ant eating), but variation in diet among the 17 species of horned lizards (Phrynosoma) makes them an ideal group to examine the relationship between dietary specialization and the resultant morphological and functional changes of the feeding system. In this study, we perform a detailed analysis of the jaw adductor musculature and use a biomechanical model validated with in vivo bite force data to examine the evolution of bite force in Phrynosoma. Our model simulations demonstrate that bite force varies predictably with respect to the gape angle and bite position along the tooth row, with maximal bite forces being attained at lower gape angles and at the posterior tooth positions. Maximal bite forces vary considerably among horned lizards, with highly myrmecophagous species exhibiting very low bite forces. In contrast, members of the short-horned lizard clade are able to bite considerably harder than even closely related dietary generalists. This group appears to be built for performing crushing bites and may represent a divergent morphology adapted for eating hard prey items. The evolutionary loss of processing morphology (teeth, jaw and muscle reduction) and bite force in ant specialists may be a response to the lack of prey processing rather than a functional adaptation per se.


Asunto(s)
Fuerza de la Mordida , Conducta Alimentaria , Maxilares/anatomía & histología , Lagartos/anatomía & histología , Músculo Esquelético/anatomía & histología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Maxilares/fisiología , Lagartos/fisiología , Músculo Esquelético/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-27986994

RESUMEN

Titin contributes to sarcomere assembly, muscle signaling, and mechanical properties of muscle. The mdm mouse exhibits a small deletion in the titin gene resulting in dystrophic mutants and phenotypically normal heterozygotes. We examined the effects of this mutation on locomotion to assess how, and if, changes to muscle phenotype explain observed locomotor differences. Mutant mice are much smaller in size than their siblings and gait abnormalities may be driven by differences in limb proportions and/or by changes to muscle phenotype caused by the titin mutation. We quantified differences in walking gait among mdm genotypes and also determined whether genotypes vary in limb morphometrics. Mice were filmed walking, and kinematic and morphological variables were measured. Mutant mice had a smaller range of motion at the ankle, shorter stride lengths, and shorter stance duration, but walked at the same relative speeds as the other genotypes. Although phenotypically similar to wildtype mice, heterozygous mice frequently exhibited intermediate gait mechanics. Morphological differences among genotypes in hindlimb proportions were small and do not explain the locomotor differences. We suggest that differences in locomotion among mdm genotypes are due to changes in muscle phenotype caused by the titin mutation.


Asunto(s)
Extremidades/patología , Extremidades/fisiopatología , Músculo Esquelético/metabolismo , Proteínas Quinasas/metabolismo , Caminata/fisiología , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Femenino , Trastornos Neurológicos de la Marcha/metabolismo , Trastornos Neurológicos de la Marcha/patología , Masculino , Ratones Transgénicos , Mutación , Fenotipo , Proteínas Quinasas/genética , Rango del Movimiento Articular/fisiología
9.
J Exp Biol ; 220(Pt 22): 4177-4185, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28939561

RESUMEN

Negative work occurs in muscles during braking movements such as downhill walking or landing after a jump. When performing negative work during stretch-shortening cycles, viscoelastic structures within muscles store energy during stretch, return a fraction of this energy during shortening and dissipate the remaining energy as heat. Because tendons and extracellular matrix are relatively elastic rather than viscoelastic, energy is mainly dissipated by cross bridges and titin. Recent studies demonstrate that titin stiffness increases in active skeletal muscles, suggesting that titin contributions to negative work may have been underestimated in previous studies. The muscular dystrophy with myositis (mdm) mutation in mice results in a deletion in titin that leads to reduced titin stiffness in active muscle, providing an opportunity to investigate the contribution of titin to negative work in stretch-shortening cycles. Using the work loop technique, extensor digitorum longus and soleus muscles from mdm and wild-type (WT) mice were stimulated during the stretch phase of stretch-shortening cycles to investigate negative work. The results demonstrate that, compared with WT muscles, negative work is reduced in muscles from mdm mice. We suggest that changes in the viscoelastic properties of mdm titin reduce energy storage by muscles during stretch and energy dissipation during shortening. Maximum isometric stress is also reduced in muscles from mdm mice, possibly due to impaired transmission of cross-bridge force, impaired cross-bridge function or both. Functionally, the reduction in negative work could lead to increased muscle damage during eccentric contractions that occur during braking movements.


Asunto(s)
Metabolismo Energético , Contracción Muscular , Proteínas Quinasas/genética , Animales , Ratones , Músculo Esquelético/fisiología , Mutación , Proteínas Quinasas/metabolismo
10.
J Exp Biol ; 220(Pt 5): 828-836, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27994045

RESUMEN

Titin has long been known to contribute to muscle passive tension. Recently, it was also demonstrated that titin-based stiffness increases upon Ca2+ activation of wild-type mouse psoas myofibrils stretched beyond overlap of the thick and thin filaments. In addition, this increase in titin-based stiffness was impaired in single psoas myofibrils from mdm mice, characterized by a deletion in the N2A region of the Ttn gene. Here, we investigated the effects of activation on elastic properties of intact soleus muscles from wild-type and mdm mice to determine whether titin contributes to active muscle stiffness. Using load-clamp experiments, we compared the stress-strain relationships of elastic elements in active and passive muscles during unloading, and quantified the change in stiffness upon activation. Results from wild-type muscles show that upon activation, the elastic modulus increases, elastic elements develop force at 15% shorter lengths, and there was a 2.9-fold increase in the slope of the stress-strain relationship. These results are qualitatively and quantitatively similar to results from single wild-type psoas myofibrils. In contrast, mdm soleus showed no effect of activation on the slope or intercept of the stress-strain relationship, which is consistent with impaired titin activation observed in single mdm psoas myofibrils. Therefore, it is likely that titin plays a role in the increase of active muscle stiffness during rapid unloading. These results are consistent with the idea that, in addition to the thin filaments, titin is activated upon Ca2+ influx in skeletal muscle.


Asunto(s)
Conectina/genética , Módulo de Elasticidad , Eliminación de Gen , Músculo Esquelético/fisiopatología , Distrofias Musculares/fisiopatología , Miositis/fisiopatología , Animales , Fenómenos Biomecánicos , Conectina/metabolismo , Contracción Isométrica , Ratones , Modelos Biológicos , Contracción Muscular , Músculo Esquelético/fisiología , Distrofias Musculares/genética , Miositis/genética
11.
J Exp Biol ; 218(Pt 5): 694-702, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25573826

RESUMEN

Shivering frequency scales predictably with body mass and is 10 times higher in a mouse than a moose. The link between shivering frequency and body mass may lie in the tuning of muscle elastic properties. Titin functions as a muscle 'spring', so shivering frequency may be linked to titin's structure. The muscular dystrophy with myositis (mdm) mouse is characterized by a deletion in titin's N2A region. Mice that are homozygous for the mdm mutation have a lower body mass, stiffer gait and reduced lifespan compared with their wild-type and heterozygous siblings. We characterized thermoregulation in these mice by measuring metabolic rate and tremor frequency during shivering. Mutants were heterothermic at ambient temperatures of 20-37°C while wild-type and heterozygous mice were homeothermic. Metabolic rate increased at smaller temperature differentials (i.e. the difference between body and ambient temperatures) in mutants than in non-mutants. The difference between observed tremor frequencies and shivering frequencies predicted by body mass was significantly larger for mutant mice than for wild-type or heterozygous mice, even after accounting for differences in body temperature. Together, the heterothermy in mutants, the increase in metabolic rate at low temperature differentials and the decreased tremor frequency demonstrate the thermoregulatory challenges faced by mice with the mdm mutation. Oscillatory frequency is proportional to the square root of stiffness, and we observed that mutants had lower active muscle stiffness in vitro. The lower tremor frequencies in mutants are consistent with reduced active muscle stiffness and suggest that titin affects the tuning of shivering frequency.


Asunto(s)
Conectina/metabolismo , Tiritona/fisiología , Termogénesis/fisiología , Animales , Metabolismo Basal , Regulación de la Temperatura Corporal/fisiología , Peso Corporal , Frío , Conectina/genética , Ratones , Ratones Mutantes , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/genética , Miositis/genética , Tiritona/genética , Termogénesis/genética , Temblor/fisiopatología
12.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865266

RESUMEN

In muscle, titin proteins connect myofilaments together and are thought to be critical for contraction, especially during residual force enhancement (RFE) when force is elevated after an active stretch. We investigated titin's function during contraction using small-angle X-ray diffraction to track structural changes before and after 50% titin cleavage and in the RFE-deficient, mdm titin mutant. We report that the RFE state is structurally distinct from pure isometric contractions, with increased thick filament strain and decreased lattice spacing, most likely caused by elevated titin-based forces. Furthermore, no RFE structural state was detected in mdm muscle. We posit that decreased lattice spacing, increased thick filament stiffness, and increased non-crossbridge forces are the major contributors to RFE. We conclude that titin directly contributes to RFE.

13.
Proc Biol Sci ; 279(1730): 981-90, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21900329

RESUMEN

Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.


Asunto(s)
Modelos Biológicos , Contracción Muscular/fisiología , Proteínas Musculares/fisiología , Proteínas Quinasas/fisiología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiología , Actinas/metabolismo , Calcio/metabolismo , Conectina , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Tono Muscular , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Sarcómeros/metabolismo , Sarcómeros/fisiología , Sarcómeros/ultraestructura
14.
Exerc Sport Sci Rev ; 40(2): 73-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22157359

RESUMEN

Several properties of muscle defy explanation solely based on the sliding filament-swinging cross-bridge theory. Indeed, muscle behaves as though there is a dynamic "spring" within the sarcomeres. We propose a new "winding filament" mechanism for how titin acts, in conjunction with the cross-bridges, as a force-dependent spring. The addition of titin into active sarcomeres resolves many puzzling muscle characteristics.


Asunto(s)
Contracción Muscular/fisiología , Proteínas Musculares/fisiología , Músculo Esquelético/fisiología , Proteínas Quinasas/fisiología , Fenómenos Biomecánicos , Conectina , Citoesqueleto/fisiología , Humanos
15.
Front Physiol ; 12: 648019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854441

RESUMEN

The sliding filament-swinging cross bridge theory of skeletal muscle contraction provides a reasonable description of muscle properties during isometric contractions at or near maximum isometric force. However, it fails to predict muscle force during dynamic length changes, implying that the model is not complete. Mounting evidence suggests that, along with cross bridges, a Ca2+-sensitive viscoelastic element, likely the titin protein, contributes to muscle force and work. The purpose of this study was to develop a multi-level approach deploying stretch-shortening cycles (SSCs) to test the hypothesis that, along with cross bridges, Ca2+-sensitive viscoelastic elements in sarcomeres contribute to force and work. Using whole soleus muscles from wild type and mdm mice, which carry a small deletion in the N2A region of titin, we measured the activation- and phase-dependence of enhanced force and work during SSCs with and without doublet stimuli. In wild type muscles, a doublet stimulus led to an increase in peak force and work per cycle, with the largest effects occurring for stimulation during the lengthening phase of SSCs. In contrast, mdm muscles showed neither doublet potentiation features, nor phase-dependence of activation. To further distinguish the contributions of cross bridge and non-cross bridge elements, we performed SSCs on permeabilized psoas fiber bundles activated to different levels using either [Ca2+] or [Ca2+] plus the myosin inhibitor 2,3-butanedione monoxime (BDM). Across activation levels ranging from 15 to 100% of maximum isometric force, peak force, and work per cycle were enhanced for fibers in [Ca2+] plus BDM compared to [Ca2+] alone at a corresponding activation level, suggesting a contribution from Ca2+-sensitive, non-cross bridge, viscoelastic elements. Taken together, our results suggest that a tunable viscoelastic element such as titin contributes to: (1) persistence of force at low [Ca2+] in doublet potentiation; (2) phase- and length-dependence of doublet potentiation observed in wild type muscles and the absence of these effects in mdm muscles; and (3) increased peak force and work per cycle in SSCs. We conclude that non-cross bridge viscoelastic elements, likely titin, contribute substantially to muscle force and work, as well as the phase-dependence of these quantities, during dynamic length changes.

16.
J Exp Biol ; 213(Pt 12): 2001-8, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20511513

RESUMEN

Inertial suction feeding is the most common method of prey capture among aquatic vertebrates. However, it had been unclear whether the aquatic frogs in the family Pipidae also used inertial suction for prey capture. In this study, we examined feeding behavior in four species of pipids, Pipa pipa, Xenopus laevis, Hymenochirus boettgeri and Pseudhymenochirus merlini. Pressure in the buccopharyngeal cavity was measured during prey capture. These pressure measurements were coupled with high-speed recordings of feeding behavior. For each species, the internal buccopharyngeal pressure was found to drop significantly below ambient pressure, and changes in pressure corresponded with the onset of mouth opening. Kinematic analysis revealed that all species of pipids generated subambient pressure during prey capture; H. boettgeri and P. merlini relied solely on inertial suction feeding. Pipa pipa and X. laevis additionally employed forelimb scooping during prey capture but both of these species demonstrated the ability to capture prey with inertial suction alone. Based on buccopharyngeal pressure measurements as well as kinematic analyses, we conclude that inertial suction feeding is used during prey capture in these four species of pipids.


Asunto(s)
Conducta Alimentaria/fisiología , Pipidae/fisiología , Conducta Predatoria/fisiología , Agua , Animales , Fenómenos Biomecánicos/fisiología , Presión
17.
Artículo en Inglés | MEDLINE | ID: mdl-19657661

RESUMEN

This study investigated how visual information about prey location and biomechanical constraints of the feeding apparatus influence the feeding behavior of the tomato frog, Dyscophus guineti. When feeding on prey at small azimuths (less than +/- 40 degrees), frogs aimed their heads toward the prey but did not aim their tongues relative to their heads. Frogs projected their tongues rapidly by transferring momentum from the lower jaw to the tongue. Storage and recovery of elastic energy by the mouth opening muscles amplified the velocities of mouth opening and tongue projection. This behavior can only occur when the lower jaw and tongue are aligned (i.e., within the range of motion of the neck). When feeding on prey at large azimuths (greater than +/- 40 degrees), frogs aimed both the head and tongue toward the prey and used a muscular hydrostatic mechanism to project the tongue. Hydrostatic elongation allows for frogs to capture prey at greater azimuthal locations. Because the tongue moves independently of the lower jaw, frogs can no longer take advantage of momentum transfer to amplify the speed of tongue projection. To feed on prey at different azimuthal locations, tomato frogs switch between alternative strategies to circumvent these biomechanical constraints.


Asunto(s)
Anuros/fisiología , Señales (Psicología) , Conducta Alimentaria , Maxilares/inervación , Actividad Motora , Conducta Predatoria , Lengua/inervación , Vías Visuales/fisiología , Animales , Fenómenos Biomecánicos , Electromiografía , Movimientos de la Cabeza , Propiocepción , Factores de Tiempo , Grabación en Video
19.
Integr Comp Biol ; 58(2): 194-206, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850810

RESUMEN

Gaps in our understanding of muscle contraction at the molecular level limit the ability to predict in vivo muscle forces in humans and animals during natural movements. Because muscles function as motors, springs, brakes, or struts, it is not surprising that uncertainties remain as to how sarcomeres produce these different behaviors. Current theories fail to explain why a single extra stimulus, added shortly after the onset of a train of stimuli, doubles the rate of force development. When stretch and doublet stimulation are combined in a work loop, muscle force doubles and work increases by 50% per cycle, yet no theory explains why this occurs. Current theories also fail to predict persistent increases in force after stretch and decreases in force after shortening. Early studies suggested that all of the instantaneous elasticity of muscle resides in the cross-bridges. Subsequent cross-bridge models explained the increase in force during active stretch, but required ad hoc assumptions that are now thought to be unreasonable. Recent estimates suggest that cross-bridges account for only ∼12% of the energy stored by muscles during active stretch. The inability of cross-bridges to account for the increase in force that persists after active stretching led to development of the sarcomere inhomogeneity theory. Nearly all predictions of this theory fail, yet the theory persists. In stretch-shortening cycles, muscles with similar activation and contractile properties function as motors or brakes. A change in the phase of activation relative to the phase of length changes can convert a muscle from a motor into a spring or brake. Based on these considerations, it is apparent that the current paradigm of muscle mechanics is incomplete. Recent advances in our understanding of giant muscle proteins, including twitchin and titin, allow us to expand our vision beyond cross-bridges to understand how muscles contribute to the biomechanics and control of movement.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Animales , Fenómenos Biomecánicos , Conectina/fisiología , Elasticidad , Humanos , Modelos Biológicos , Sarcómeros/fisiología
20.
J Sport Health Sci ; 7(3): 265-274, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30356648

RESUMEN

The peculiar attributes of muscles that are stretched when active have been noted for nearly a century. Understandably, the focus of muscle physiology has been primarily on shortening and isometric contractions, as eloquently revealed by A.V. Hill and subsequently by his students. When the sliding filament theory was introduced by A.F. Huxley and H.E. Huxley, it was a relatively simple task to link Hill's mechanical observations to the actions of the cross bridges during these shortening and isometric contractions. In contrast, lengthening or eccentric contractions have remained somewhat enigmatic. Dismissed as necessarily causing muscle damage, eccentric contractions have been much more difficult to fit into the cross-bridge theory. The relatively recent discovery of the giant elastic sarcomeric filament titin has thrust a previously missing element into any discussion of muscle function, in particular during active stretch. Indeed, the unexpected contribution of giant elastic proteins to muscle contractile function is highlighted by recent discoveries that twitchin-actin interactions are responsible for the "catch" property of invertebrate muscle. In this review, we examine several current theories that have been proposed to account for the properties of muscle during eccentric contraction. We ask how well each of these explains existing data and how an elastic filament can be incorporated into the sliding filament model. Finally, we review the increasing body of evidence for the benefits of including eccentric contractions into a program of muscle rehabilitation and strengthening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA