Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Arch Toxicol ; 97(12): 3285-3301, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37707622

RESUMEN

Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.


Asunto(s)
Esfingomielina Fosfodiesterasa , Venenos de Araña , Animales , Humanos , Inflamación , Interleucina-1/metabolismo , Hidrolasas Diéster Fosfóricas/toxicidad , Transducción de Señal , Esfingomielina Fosfodiesterasa/metabolismo , Arañas/química , Arañas/metabolismo , Venenos de Araña/toxicidad , Picaduras de Arañas/patología , Receptores ErbB/metabolismo
2.
Mol Biol Evol ; 37(12): 3563-3575, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32722789

RESUMEN

Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named snake venom metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an "SVMP-like" function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary noncatalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, whereas the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on nonhomologous genes, yielding alternate biochemical components.


Asunto(s)
Evolución Molecular , Metaloproteinasas de la Matriz/metabolismo , Venenos de Serpiente/enzimología , Serpientes/metabolismo , Animales , Metaloproteinasas de la Matriz/genética , Fenotipo , Proteolisis , Venenos de Serpiente/genética , Serpientes/genética , Transcriptoma
3.
PLoS Pathog ; 15(6): e1007880, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31211814

RESUMEN

The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions.


Asunto(s)
Artritis/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/fisiología , Citidina Desaminasa/inmunología , Proteínas/inmunología , Replicación Viral/inmunología , Adulto , Animales , Artritis/patología , Artritis/virología , Fiebre Chikungunya/patología , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Femenino , Fiebre/inmunología , Fiebre/patología , Fiebre/virología , Estudios de Seguimiento , Humanos , Interleucina-1beta/inmunología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología
4.
New Phytol ; 232(4): 1738-1749, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34312886

RESUMEN

Most research in plant chronobiology has been done in laboratory conditions. However, laboratories usually fail to mimic natural conditions and their slight fluctuations, highlighting or obfuscating rhythmicity. High-density crops, such as sugarcane (Saccharum hybrid), generate field microenvironments with specific light and temperature regimes resulting from mutual shading. We measured the metabolic and transcriptional rhythms in the leaves of 4-month-old (4 mo) and 9 mo field-grown sugarcane. Most of the assayed rhythms in 9 mo sugarcane peaked >1 h later than in 4 mo sugarcane, including rhythms of the circadian clock gene, LATE ELONGATED HYPOCOTYL (LHY). We hypothesized that older sugarcane perceives dawn later than younger sugarcane as a consequence of self-shading. As a test, we measured LHY rhythms in plants on the east and the west sides of a field. We also tested if a wooden wall built between lines of sugarcane plants changed their rhythms. The LHY peak was delayed in the plants in the west of the field or beyond the wall; both shaded at dawn. We conclude that plants in the same field may have different phases resulting from field microenvironments, impacting important agronomical traits, such as flowering time, stalk weight and number.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Fenotipo , Hojas de la Planta
5.
BMC Genomics ; 15: 540, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24984568

RESUMEN

BACKGROUND: Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome. RESULTS: Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences. CONCLUSION: This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery.


Asunto(s)
Genoma de Planta , Saccharum/genética , Secuencia de Bases , Evolución Biológica , Biotecnología , Cromosomas Artificiales Bacterianos , Duplicación de Gen , Biblioteca de Genes , Haplotipos , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/genética , Proteínas de Plantas/genética , Poliploidía , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN , Sorghum/genética
6.
Plant Mol Biol ; 79(4-5): 461-77, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22610347

RESUMEN

Sugarcane is an important sugar and energy crop that can be used efficiently for biofuels production. The development of sugarcane cultivars tolerant to drought could allow for the expansion of plantations to sub-prime regions. Knowledge on the mechanisms underlying drought responses and its relationship with carbon partition would greatly help to define routes to increase yield. In this work we studied sugarcane responses to drought using a custom designed oligonucleotide array with 21,901 different probes. The oligoarrays were designed to contain probes that detect transcription in both sense and antisense orientation. We validated the results obtained using quantitative real-time PCR (qPCR). A total of 987 genes were differentially expressed in at least one sample of sugarcane plants submitted to drought for 24, 72 and 120 h. Among them, 928 were sense transcripts and 59 were antisense transcripts. Genes related to Carbohydrate Metabolism, RNA Metabolism and Signal Transduction were selected for gene expression validation by qPCR that indicated a validation percentage of 90%. From the probes presented on the array, 75% of the sense probes and 11.9% of the antisense probes have signal above background and can be classified as expressed sequences. Our custom sugarcane oligonucleotide array provides sensitivity and good coverage of sugarcane transcripts for the identification of a representative proportion of natural antisense transcripts (NATs) and sense-antisense transcript pairs (SATs). The antisense transcriptome showed, in most cases, co-expression with respective sense transcripts.


Asunto(s)
Sequías , Saccharum/genética , Saccharum/metabolismo , Aclimatación/genética , Metabolismo de los Hidratos de Carbono/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Sondas ARN/genética , ARN sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transcriptoma
7.
Gigascience ; 8(12)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782791

RESUMEN

BACKGROUND: Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10-13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. RESULTS: Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2-6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ∼3.8-4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. CONCLUSIONS: This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.


Asunto(s)
Mapeo Contig/métodos , Glucosiltransferasas/genética , Fenilanina Amoníaco-Liasa/genética , Saccharum/crecimiento & desarrollo , Biomasa , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Variación Genética , Tamaño del Genoma , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/genética , Poliploidía , Regiones Promotoras Genéticas , Saccharum/genética
8.
Plant Cell Environ ; 31(8): 1116-27, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18433443

RESUMEN

Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (approximately 370 ppm) and elevated (approximately 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.


Asunto(s)
Biomasa , Dióxido de Carbono/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Saccharum/efectos de los fármacos , Saccharum/genética , Celulosa/metabolismo , Gases/metabolismo , Humedad , Luz , Lignina/metabolismo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharum/crecimiento & desarrollo , Saccharum/efectos de la radiación , Sacarosa/metabolismo , Temperatura
9.
Parasit Vectors ; 11(1): 314, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29793520

RESUMEN

BACKGROUND: Hard ticks are hematophagous ectoparasites characterized by their long-term feeding. The saliva that they secrete during their blood meal is their crucial weapon against host-defense systems including hemostasis, inflammation and immunity. The anti-hemostatic, anti-inflammatory and immune-modulatory activities carried out by tick saliva molecules warrant their pharmacological investigation. The Hyalomma dromedarii Koch, 1844 tick is a common parasite of camels and probably the best adapted to deserts of all hard ticks. Like other hard ticks, the salivary glands of this tick may provide a rich source of many compounds whose biological activities interact directly with host system pathways. Female H. dromedarii ticks feed longer than males, thereby taking in more blood. To investigate the differences in feeding behavior as reflected in salivary compounds, we performed de novo assembly and annotation of H. dromedarii sialotranscriptome paying particular attention to variations in gender gene expression. RESULTS: The quality-filtered Illumina sequencing reads deriving from a cDNA library of salivary glands led to the assembly of 15,342 transcripts. We deduced that the secreted proteins included: metalloproteases, glycine-rich proteins, mucins, anticoagulants of the mandanin family and lipocalins, among others. Expression analysis revealed differences in the expression of transcripts between male and female H. dromedarii that might explain the blood-feeding strategies employed by both genders. CONCLUSIONS: The annotated sialome of H. dromedarii helps understand the interaction of tick-host molecules during blood-feeding and can lead to the discovery of new pharmacologically active proteins of ticks of the genus Hyalomma.


Asunto(s)
Proteínas de Artrópodos/genética , Camelus/parasitología , Ixodidae/genética , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica/veterinaria , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Interacciones Huésped-Parásitos , Ixodidae/química , Masculino , Anotación de Secuencia Molecular , Filogenia , Saliva/química , Glándulas Salivales/química , Análisis de Secuencia de ADN/veterinaria , Túnez
10.
PLoS One ; 13(3): e0193739, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29561852

RESUMEN

BACKGROUND: Except for the northern region, where the Amazonian black scorpion, T. obscurus, represents the predominant and most medically relevant scorpion species, Tityus serrulatus, the Brazilian yellow scorpion, is widely distributed throughout Brazil, causing most envenoming and fatalities due to scorpion sting. In order to evaluate and compare the diversity of venom components of Tityus obscurus and T. serrulatus, we performed a transcriptomic investigation of the telsons (venom glands) corroborated by a shotgun proteomic analysis of the venom from the two species. RESULTS: The putative venom components represented 11.4% and 16.7% of the total gene expression for T. obscurus and T. serrulatus, respectively. Transcriptome and proteome data revealed high abundance of metalloproteinases sequences followed by sodium and potassium channel toxins, making the toxin core of the venom. The phylogenetic analysis of metalloproteinases from T. obscurus and T. serrulatus suggested an intraspecific gene expansion, as we previously observed for T. bahiensis, indicating that this enzyme may be under evolutionary pressure for diversification. We also identified several putative venom components such as anionic peptides, antimicrobial peptides, bradykinin-potentiating peptide, cysteine rich protein, serine proteinases, cathepsins, angiotensin-converting enzyme, endothelin-converting enzyme and chymotrypsin like protein, proteinases inhibitors, phospholipases and hyaluronidases. CONCLUSION: The present work shows that the venom composition of these two allopatric species of Tityus are considerably similar in terms of the major classes of proteins produced and secreted, although their individual toxin sequences are considerably divergent. These differences at amino acid level may reflect in different epitopes for the same protein classes in each species, explaining the basis for the poor recognition of T. obscurus venom by the antiserum raised against other species.


Asunto(s)
Regulación de la Expresión Génica , Proteoma/metabolismo , Venenos de Escorpión/genética , Venenos de Escorpión/metabolismo , Escorpiones/metabolismo , Transcriptoma , Secuencia de Aminoácidos , Animales , Filogenia , Proteómica , Escorpiones/clasificación , Escorpiones/genética , Homología de Secuencia , Especificidad de la Especie
11.
Mitochondrial DNA B Resour ; 1(1): 907-908, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33490425

RESUMEN

The complete mitochondrial genome, containing 17,526 bp, was determined from the pitviper Bothrops jararaca. It is the first mitogenome for the most medically important genus of snake in Latin America. This mitogenome has common snake mitochondrial features such as a duplicated control region that has nearly identical sequences at two different locations of the mitogenome and a translocation of tRNA-Leu (UUR). Besides, we found a translocation of the tRNA-Pro compared to Colubridae snakes. Finally, an unusual possible duplication containing a tRNA-Phe was observed for the first time and may represent a marker of the genus.

12.
PLoS One ; 9(9): e107351, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25222706

RESUMEN

Sugarcane is a major crop used for food and bioenergy production. Modern cultivars are hybrids derived from crosses between Saccharum officinarum and Saccharum spontaneum. Hybrid cultivars combine favorable characteristics from ancestral species and contain a genome that is highly polyploid and aneuploid, containing 100-130 chromosomes. These complex genomes represent a huge challenge for molecular studies and for the development of biotechnological tools that can facilitate sugarcane improvement. Here, we describe full-length enriched cDNA libraries for Saccharum officinarum, Saccharum spontaneum, and one hybrid genotype (SP803280) and analyze the set of open reading frames (ORFs) in their genomes (i.e., their ORFeomes). We found 38,195 (19%) sugarcane-specific transcripts that did not match transcripts from other databases. Less than 1.6% of all transcripts were ancestor-specific (i.e., not expressed in SP803280). We also found 78,008 putative new sugarcane transcripts that were absent in the largest sugarcane expressed sequence tag database (SUCEST). Functional annotation showed a high frequency of protein kinases and stress-related proteins. We also detected natural antisense transcript expression, which mapped to 94% of all plant KEGG pathways; however, each genotype showed different pathways enriched in antisense transcripts. Our data appeared to cover 53.2% (17,563 genes) and 46.8% (937 transcription factors) of all sugarcane full-length genes and transcription factors, respectively. This work represents a significant advancement in defining the sugarcane ORFeome and will be useful for protein characterization, single nucleotide polymorphism and splicing variant identification, evolutionary and comparative studies, and sugarcane genome assembly and annotation.


Asunto(s)
Biblioteca de Genes , Sistemas de Lectura Abierta/genética , Saccharum/genética , Cromosomas de las Plantas/genética , Etiquetas de Secuencia Expresada , Genoma de Planta/genética , Genotipo , Saccharum/metabolismo
13.
PLoS One ; 8(8): e71847, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936527

RESUMEN

Commercial sugarcane (Saccharum hybrid) is a highly polyploid and aneuploid grass that stores large amounts of sucrose in its stem. We have measured circadian rhythms of sense and antisense transcription in a commercial cultivar (RB855453) using a custom oligoarray with 14,521 probes that hybridize to sense transcripts (SS) and 7,380 probes that hybridize to antisense transcripts (AS).We estimated that 32% of SS probes and 22% AS probes were rhythmic. This is a higher proportion of rhythmic probes than the usually found in similar experiments in other plant species. Orthologs and inparalogs of Arabidopsis thaliana, sugarcane, rice, maize and sorghum were grouped in ortholog clusters. When ortholog clusters were used to compare probes among different datasets, sugarcane also showed a higher proportion of rhythmic elements than the other species. Thus, it is possible that a higher proportion of transcripts are regulated by the sugarcane circadian clock. Thirty-six percent of the identified AS/SS pairs had significant correlated time courses and 64% had uncorrelated expression patterns. The clustering of transcripts with similar function, the anticipation of daily environmental changes and the temporal compartmentation of metabolic processes were some properties identified in the circadian sugarcane transcriptome. During the day, there was a dominance of transcripts associated with photosynthesis and carbohydrate metabolism, including sucrose and starch synthesis. During the night, there was dominance of transcripts associated with genetic processing, such as histone regulation and RNA polymerase, ribosome and protein synthesis. Finally, the circadian clock also regulated hormone signalling pathways: a large proportion of auxin and ABA signalling components were regulated by the circadian clock in an unusual biphasic distribution.


Asunto(s)
Ritmo Circadiano/genética , Productos Agrícolas/genética , Poliploidía , ARN sin Sentido/genética , Saccharum/genética , Transcripción Genética/fisiología , Relojes Circadianos/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Productos Agrícolas/efectos de la radiación , Luz , Saccharum/metabolismo , Saccharum/fisiología , Saccharum/efectos de la radiación , Homología de Secuencia de Ácido Nucleico , Sacarosa/metabolismo , Transcriptoma/fisiología
14.
Genome Biol ; 14(6): 210, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23805917

RESUMEN

The Saccharinae, especially sugarcane, Miscanthus and sorghum, present remarkable characteristics for bioenergy production. Biotechnology of these plants will be important for a sustainable feedstock supply. Herein, we review knowledge useful for their improvement and synergies gained by their parallel study.


Asunto(s)
Biocombustibles , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Saccharum/genética , Sorghum/genética , Biomasa , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Ingeniería Metabólica , Redes y Vías Metabólicas , Fotosíntesis/genética , Saccharum/crecimiento & desarrollo , Saccharum/metabolismo , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA