RESUMEN
Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.
Asunto(s)
Microcefalia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células HEK293 , Serina-Treonina Quinasas TORRESUMEN
SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.
Asunto(s)
Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Mutación , Factores de Transcripción/genética , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Proteínas de Unión al ADN , Cara/anomalías , Femenino , Deformidades Congénitas de la Mano/genética , Humanos , Masculino , Micrognatismo/genética , Cuello/anomalías , Proteína Reelina , SíndromeRESUMEN
LARS2 variants are associated with Perrault syndrome, characterized by premature ovarian failure and hearing loss, and with an infantile lethal multisystem disorder: Hydrops, lactic acidosis, sideroblastic anemia (HLASA) in one individual. Recently we reported LARS2 deafness with (ovario) leukodystrophy. Here we describe five patients with a range of phenotypes, in whom we identified biallelic LARS2 variants: three patients with a HLASA-like phenotype, an individual with Perrault syndrome whose affected siblings also had leukodystrophy, and an individual with a reversible mitochondrial myopathy, lactic acidosis, and developmental delay. Three HLASA cases from two unrelated families were identified. All were males with genital anomalies. Two survived multisystem disease in the neonatal period; both have developmental delay and hearing loss. A 55-year old male with deafness has not displayed neurological symptoms while his female siblings with Perrault syndrome developed leukodystrophy and died in their 30s. Analysis of muscle from a child with a reversible myopathy showed reduced LARS2 and mitochondrial complex I levels, and an unusual form of degeneration. Analysis of recombinant LARS2 variant proteins showed they had reduced aminoacylation efficiency, with HLASA-associated variants having the most severe effect. A broad phenotypic spectrum should be considered in association with LARS2 variants.
Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Disgenesia Gonadal 46 XX/genética , Pérdida Auditiva Sensorineural/genética , Miopatías Mitocondriales/genética , Acidosis Láctica/genética , Adulto , Anemia Sideroblástica/genética , Edema/genética , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Estructura Terciaria de ProteínaRESUMEN
Massively parallel sequencing has markedly improved mendelian diagnostic rates. This study assessed the effects of custom alterations to a diagnostic genomic bioinformatic pipeline in response to clinical need and derived practice recommendations relative to diagnostic rates and efficiency. The Genomic Annotation and Interpretation Application (GAIA) bioinformatics pipeline was designed to detect panel, exome, and genome sample integrity and prioritize gene variants in mendelian disorders. Reanalysis of selected negative cases was performed after improvements to the pipeline. GAIA improvements and their effect on sensitivity are described, including addition of a PubMed search for gene-disease associations not in the Online Mendelian Inheritance of Man database, inclusion of a process for calling low-quality variants (known as QPatch), and gene symbol nomenclature consistency checking. The new pipeline increased the diagnostic rate and reduced staff costs, resulting in a saving of US$844.34 per additional diagnosis. Recommendations for genomic analysis pipeline requirements are summarized. Clinically responsive bioinformatics pipeline improvements increase diagnostic sensitivity and increase cost-effectiveness.
Asunto(s)
Secuenciación del Exoma/métodos , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/métodos , Genómica/métodos , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis Costo-Beneficio , Exoma , Pruebas Genéticas/economía , Genoma Humano , Genómica/economía , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Mutación INDEL , Fenotipo , Polimorfismo de Nucleótido Simple , Sensibilidad y Especificidad , Secuenciación del Exoma/economíaRESUMEN
Pathogenic variants in CDH1, encoding epithelial cadherin (E-cadherin), have been implicated in hereditary diffuse gastric cancer (HDGC), lobular breast cancer, and both syndromic and non-syndromic cleft lip/palate (CL/P). Despite the large number of CDH1 mutations described, the nature of the phenotypic consequence of such mutations is currently not able to be predicted, creating significant challenges for genetic counselling. This study collates the phenotype and molecular data for available CDH1 variants that have been classified, using the American College of Medical Genetics and Genomics criteria, as at least 'likely pathogenic', and correlates their molecular and structural characteristics to phenotype. We demonstrate that CDH1 variant type and location differ between HDGC and CL/P, and that there is clustering of CL/P variants within linker regions between the extracellular domains of the cadherin protein. While these differences do not provide for exact prediction of the phenotype for a given mutation, they may contribute to more accurate assessments of risk for HDGC or CL/P for individuals with specific CDH1 variants.