Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 39(15): e103457, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32567721

RESUMEN

Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Glicosilación , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas , Receptores de Ácido Kaínico/genética , Receptor de Ácido Kaínico GluK2 , Receptor Kainato GluK3
2.
FASEB J ; 34(2): 2465-2482, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908000

RESUMEN

The protease beta-site APP cleaving enzyme 1 (BACE1) has fundamental functions in the nervous system. Its inhibition is a major therapeutic approach in Alzheimer's disease, because BACE1 cleaves the amyloid precursor protein (APP), thereby catalyzing the first step in the generation of the pathogenic amyloid beta (Aß) peptide. Yet, BACE1 cleaves numerous additional membrane proteins besides APP. Most of these substrates have been identified in vitro, but only few were further validated or characterized in vivo. To identify BACE1 substrates with in vivo relevance, we used isotope label-based quantitative proteomics of wild type and BACE1-deficient (BACE1 KO) mouse brains. This approach identified known BACE1 substrates, including Close homolog of L1 and contactin-2, which were found to be enriched in the membrane fraction of BACE1 KO brains. VWFA and cache domain-containing protein 1 (CACHD)1 and MAM domain-containing glycosylphosphatidylinositol anchor protein 1 (MDGA1), which have functions in synaptic transmission, were identified and validated as new BACE1 substrates in vivo by immunoblots using primary neurons and mouse brains. Inhibition or deletion of BACE1 from primary neurons resulted in a pronounced inhibition of substrate cleavage and a concomitant increase in full-length protein levels of CACHD1 and MDGA1. The BACE1 cleavage site in both proteins was determined to be located within the juxtamembrane domain. In summary, this study identifies and validates CACHD1 and MDGA1 as novel in vivo substrates for BACE1, suggesting that cleavage of both proteins may contribute to the numerous functions of BACE1 in the nervous system.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteómica , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Encéfalo/patología , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética
3.
Mol Cell Proteomics ; 17(8): 1487-1501, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29716987

RESUMEN

The cell surface proteome is dynamic and has fundamental roles in cell signaling. Many surface membrane proteins are proteolytically released into a cell's secretome, where they can have additional functions in cell-cell-communication. Yet, it remains challenging to determine the surface proteome and to compare it to the cell secretome, under serum-containing cell culture conditions. Here, we set up and evaluated the 'surface-spanning protein enrichment with click sugars' (SUSPECS) method for cell surface membrane glycoprotein biotinylation, enrichment and label-free quantitative mass spectrometry. SUSPECS is based on click chemistry-mediated labeling of glycoproteins, is compatible with labeling of living cells and can be combined with secretome analyses in the same experiment. Immunofluorescence-based confocal microscopy demonstrated that SUSPECS selectively labeled cell surface proteins. Nearly 700 transmembrane glycoproteins were consistently identified at the surface of primary neurons. To demonstrate the utility of SUSPECS, we applied it to the protease BACE1, which is a key drug target in Alzheimer's disease. Pharmacological BACE1-inhibition selectively remodeled the neuronal surface glycoproteome, resulting in up to 7-fold increased abundance of the BACE1 substrates APP, APLP1, SEZ6, SEZ6L, CNTN2, and CHL1, whereas other substrates were not or only mildly affected. Interestingly, protein changes at the cell surface only partly correlated with changes in the secretome. Several altered proteins were validated by immunoblots in neurons and mouse brains. Apparent nonsubstrates, such as TSPAN6, were also increased, indicating that BACE1-inhibition may lead to unexpected secondary effects. In summary, SUSPECS is broadly useful for determination of the surface glycoproteome and its correlation with the secretome.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Química Clic/métodos , Glicoproteínas/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Biotinilación , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Especificidad por Sustrato
4.
Biochim Biophys Acta ; 1822(8): 1270-83, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22551668

RESUMEN

Cholesterol accumulation in Niemann-Pick type C disease (NPC) causes increased levels of the amyloid-precursor-protein C-terminal fragments (APP-CTFs) and intracellular amyloid-ß peptide (Aß), the two central molecules in Alzheimer's disease (AD) pathogenesis. We previously reported that cholesterol accumulation in NPC-cells leads to cholesterol-dependent increased APP processing by ß-secretase (BACE1) and decreased APP expression at the cell surface (Malnar et al. Biochim Biophys Acta. 1802 (2010) 682-691.). We hypothesized that increased formation of APP-CTFs and Aß in NPC disease is due to cholesterol-mediated altered endocytic trafficking of APP and/or BACE1. Here, we show that APP endocytosis is prerequisite for enhanced Aß levels in NPC-cells. Moreover, we observed that NPC cells show cholesterol dependent sequestration and colocalization of APP and BACE1 within enlarged early/recycling endosomes which can lead to increased ß-secretase processing of APP. We demonstrated that increased endocytic localization of APP in NPC-cells is likely due to both its increased internalization and its decreased recycling to the cell surface. Our findings suggest that increased cholesterol levels, such as in NPC disease and sporadic AD, may be the upstream effector that drives amyloidogenic APP processing characteristic for Alzheimer's disease by altering endocytic trafficking of APP and BACE1.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/deficiencia , Colesterol/metabolismo , Neuronas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Androstenos/farmacología , Animales , Células CHO , Cricetinae , Endocitosis , Endosomas/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunohistoquímica , Microscopía Confocal , Neuronas/efectos de los fármacos , Enfermedad de Niemann-Pick Tipo C/patología , Ratas , Transfección
5.
Mol Neurobiol ; 59(2): 1183-1198, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34958451

RESUMEN

The membrane protein seizure 6-like (SEZ6L) is a neuronal substrate of the Alzheimer's disease protease BACE1, and little is known about its physiological function in the nervous system. Here, we show that SEZ6L constitutive knockout mice display motor phenotypes in adulthood, including changes in gait and decreased motor coordination. Additionally, SEZ6L knockout mice displayed increased anxiety-like behaviour, although spatial learning and memory in the Morris water maze were normal. Analysis of the gross anatomy and proteome of the adult SEZ6L knockout cerebellum did not reveal any major differences compared to wild type, indicating that lack of SEZ6L in other regions of the nervous system may contribute to the phenotypes observed. In summary, our study establishes physiological functions for SEZ6L in regulating motor coordination and curbing anxiety-related behaviour, indicating that aberrant SEZ6L function in the human nervous system may contribute to movement disorders and neuropsychiatric diseases.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Proteínas de la Membrana , Actividad Motora , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Humanos , Aprendizaje por Laberinto , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Cells ; 12(1)2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36611872

RESUMEN

Amyloid-ß (Aß) deposition is an initiating factor in Alzheimer's disease (AD). Microglia are the brain immune cells that surround and phagocytose Aß plaques, but their phagocytic capacity declines in AD. This is in agreement with studies that associate AD risk loci with genes regulating the phagocytic function of immune cells. Immunotherapies are currently pursued as strategies against AD and there are increased efforts to understand the role of the immune system in ameliorating AD pathology. Here, we evaluated the effect of the Aß targeting ACI-24 vaccine in reducing AD pathology in an amyloidosis mouse model. ACI-24 vaccination elicited a robust and sustained antibody response in APPPS1 mice with an accompanying reduction of Aß plaque load, Aß plaque-associated ApoE and dystrophic neurites as compared to non-vaccinated controls. Furthermore, an increased number of NLRP3-positive plaque-associated microglia was observed following ACI-24 vaccination. In contrast to this local microglial activation at Aß plaques, we observed a more ramified morphology of Aß plaque-distant microglia compared to non-vaccinated controls. Accordingly, bulk transcriptomic analysis revealed a trend towards the reduced expression of several disease-associated microglia (DAM) signatures that is in line with the reduced Aß plaque load triggered by ACI-24 vaccination. Our study demonstrates that administration of the Aß targeting vaccine ACI-24 reduces AD pathology, suggesting its use as a safe and cost-effective AD therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Animales , Microglía/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Amiloidosis/metabolismo , Placa Amiloide/metabolismo , Fenotipo , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA