Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Psychiatry ; 26(4): 1376-1398, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31444474

RESUMEN

Aberrant fear is a cornerstone of several psychiatric disorders. Consequently, there is large interest in elucidation of signaling mechanisms that link extracellular cues to changes in neuronal function and structure in brain pathways that are important in the generation and maintenance of fear memory and its behavioral expression. Members of the Plexin-B family of receptors for class 4 semaphorins play important roles in developmental plasticity of neurons, and their expression persists in some areas of the adult nervous system. Here, we aimed to elucidate the role of Semaphorin 4C (Sema4C) and its cognate receptor, Plexin-B2, in the expression of contextual and cued fear memory, setting a mechanistic focus on structural plasticity and exploration of contributing signaling pathways. We observed that Plexin-B2 and Sema4C are expressed in forebrain areas related to fear memory, such as the anterior cingulate cortex, amygdala and the hippocampus, and their expression is regulated by aversive stimuli that induce fear memory. By generating forebrain-specific Plexin-B2 knockout mice and analyzing fear-related behaviors, we demonstrate that Sema4C-PlexinB2 signaling plays a crucial functional role in the recent and remote recall of fear memory. Detailed neuronal morphological analyses revealed that Sema4C-PlexinB2 signaling largely mediates fear-induced structural plasticity by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus. Analyses on signaling-related mutant mice showed that these functions are mediated by PlexinB2-dependent RhoA activation. These results deliver important insights into the mechanistic understanding of maladaptive plasticity in fear circuits and have implications for novel therapeutic strategies against fear-related disorders.


Asunto(s)
Miedo , Memoria , Proteínas del Tejido Nervioso , Semaforinas , Animales , Moléculas de Adhesión Celular , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas , Semaforinas/genética
2.
PLoS Biol ; 13(10): e1002286, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26496209

RESUMEN

The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Lóbulo Frontal/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Lóbulo Parietal/metabolismo , Receptor Cannabinoide CB1/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Animales , Células COS , Cannabinoides/farmacología , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Embrión de Mamíferos/citología , Lóbulo Frontal/citología , Lóbulo Frontal/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Lóbulo Parietal/citología , Lóbulo Parietal/efectos de los fármacos , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
3.
Neuron ; 107(6): 1141-1159.e7, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32735781

RESUMEN

Diabetic peripheral neuropathy (DPN) is a highly frequent and debilitating clinical complication of diabetes that lacks therapies. Cellular oxidative stress regulates post-translational modifications, including SUMOylation. Here, using unbiased screens, we identified key enzymes in metabolic pathways and ion channels as novel molecular targets of SUMOylation that critically regulated their activity. Sensory neurons of diabetic patients and diabetic mice demonstrated changes in the SUMOylation status of metabolic enzymes and ion channels. In support of this, profound metabolic dysfunction, accelerated neuropathology, and sensory loss were observed in diabetic gene-targeted mice selectively lacking the ability to SUMOylate proteins in peripheral sensory neurons. TRPV1 function was impaired by diabetes-induced de-SUMOylation as well as by metabolic imbalance elicited by de-SUMOylation of metabolic enzymes, facilitating diabetic sensory loss. Our results unexpectedly uncover an endogenous post-translational mechanism regulating diabetic neuropathy in patients and mouse models that protects against metabolic dysfunction, nerve damage, and altered sensory perception.


Asunto(s)
Neuropatías Diabéticas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Nocicepción , Células Receptoras Sensoriales/metabolismo , Sumoilación , Canales Catiónicos TRPV/metabolismo , Animales , Células Cultivadas , Ciclo del Ácido Cítrico , Neuropatías Diabéticas/fisiopatología , Femenino , Ganglios Espinales/citología , Glucólisis , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Nat Med ; 21(5): 518-23, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25915831

RESUMEN

Neuropathic pain is a major, intractable clinical problem and its pathophysiology is not well understood. Although recent gene expression profiling studies have enabled the identification of novel targets for pain therapy, classical study designs provide unclear results owing to the differential expression of hundreds of genes across sham and nerve-injured groups, which can be difficult to validate, particularly with respect to the specificity of pain modulation. To circumvent this, we used two outbred lines of rats, which are genetically similar except for being genetically segregated as a result of selective breeding for differences in neuropathic pain hypersensitivity. SerpinA3N, a serine protease inhibitor, was upregulated in the dorsal root ganglia (DRG) after nerve injury, which was further validated for its mouse homolog. Mice lacking SerpinA3N developed more neuropathic mechanical allodynia than wild-type (WT) mice, and exogenous delivery of SerpinA3N attenuated mechanical allodynia in WT mice. T lymphocytes infiltrate the DRG after nerve injury and release leukocyte elastase (LE), which was inhibited by SerpinA3N derived from DRG neurons. Genetic loss of LE or exogenous application of a LE inhibitor (Sivelastat) in WT mice attenuated neuropathic mechanical allodynia. Overall, we reveal a novel and clinically relevant role for a member of the serpin superfamily and a leukocyte elastase and crosstalk between neurons and T cells in the modulation of neuropathic pain.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Inhibidores Enzimáticos/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Serpinas/metabolismo , Linfocitos T/citología , Animales , Separación Celular , Dependovirus/genética , Femenino , Ganglios Espinales/metabolismo , Hiperalgesia/fisiopatología , Hibridación in Situ , Masculino , Ratones , Ratones Transgénicos , Neuralgia , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Dolor/fisiopatología , Fenotipo , Reacción en Cadena de la Polimerasa , Ratas , Regulación hacia Arriba
5.
J Vis Exp ; (85)2014 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-24686916

RESUMEN

This report describes a step-by-step guide to the technique of acute intrathecal needle injections in a noninvasive manner, i.e. independent of catheter implantation. The technical limitation of this surgical technique lies in the finesse of the hands. The injection is rapid, especially for a trained experimenter, and since tissue disruption with this technique is minimal, repeated injections are possible; moreover immune reaction to foreign tools (e.g. catheter) does not occur, thereby giving a better and more specific read out of spinal cord modulation. Since the application of the substance is largely limited to the target region of the spinal cord, drugs do not need to be applied in large dosages, and more importantly unwanted effects on other tissue, as observed with a systemic delivery, could be circumvented(1,2). Moreover, we combine this technique with in vivo transfection of nucleic acid with the help of polyethylenimine (PEI) reagent(3), which provides tremendous versatility for studying spinal functions via delivery of pharmacological agents as well as gene, RNA, and protein modulators.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Médula Espinal/fisiología , Transfección/métodos , Animales , Inyecciones Espinales , Región Lumbosacra , Ratones , Polietileneimina/administración & dosificación
6.
Pain ; 154(12): 2801-2812, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23973358

RESUMEN

The rich diversity of lipids and the specific signalling pathways they recruit provides tremendous scope for modulation of biological functions. Lysophosphatidylinositol (LPI) is emerging as a key modulator of cell proliferation, migration, and function, and holds important pathophysiological implications due to its high levels in diseased tissues, such as in cancer. Here we report a novel role for LPI in sensitization of peripheral sensory neurons, which was evident as exaggerated sensitivity to painful and innocuous pressure. Histopathological analyses indicated lack of involvement of myelin pathology and immune cell recruitment by LPI. Using pharmacological and conditional genetic tools in mice, we delineated receptor-mediated from non-receptor-mediated effects of LPI and we observed that GPR55, which functions as an LPI receptor when heterologously expressed in mammalian cells, only partially mediates LPI-induced actions in the context of pain sensitization in vivo; we demonstrate that, in vivo, LPI functions by activating Gα(13) as well as Gα(q/11) arms of G-protein signalling in sensory neurons. This study thus reports a novel pathophysiological function for LPI and elucidates underlying molecular mechanisms.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Lisofosfolípidos/fisiología , Nocicepción/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Animales , Relación Dosis-Respuesta a Droga , Proteínas de Unión al GTP/metabolismo , Lisofosfolípidos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nocicepción/efectos de los fármacos , Fosfolípidos/farmacología , Fosfolípidos/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
7.
Nat Med ; 15(7): 802-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19525966

RESUMEN

Pain is one of the most severe and debilitating symptoms associated with several forms of cancer. Various types of carcinomas and sarcomas metastasize to skeletal bones and cause spontaneous bone pain and hyperalgesia, which is accompanied by bone degradation and remodeling of peripheral nerves. Despite recent advances, the molecular mechanisms underlying the development and maintenance of cancer-evoked pain are not well understood. Several types of non-hematopoietic tumors secrete hematopoietic colony-stimulating factors that act on myeloid cells and tumor cells. Here we report that receptors and signaling mediators of granulocyte- and granulocyte-macrophage colony-stimulating factors (G-CSF and GM-CSF) are also functionally expressed on sensory nerves. GM-CSF sensitized nerves to mechanical stimuli in vitro and in vivo, potentiated CGRP release and caused sprouting of sensory nerve endings in the skin. Interruption of G-CSF and GM-CSF signaling in vivo led to reduced tumor growth and nerve remodeling, and abrogated bone cancer pain. The key significance of GM-CSF signaling in sensory neurons was revealed by an attenuation of tumor-evoked pain following a sensory nerve-specific knockdown of GM-CSF receptors. These results show that G-CSF and GM-CSF are important in tumor-nerve interactions and suggest that their receptors on primary afferent nerve fibers constitute potential therapeutic targets in cancer pain.


Asunto(s)
Neoplasias Óseas/fisiopatología , Factor Estimulante de Colonias de Granulocitos/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Dolor Intratable/etiología , Células Receptoras Sensoriales/fisiología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocito/fisiología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA