RESUMEN
AIMS/HYPOTHESIS: The study aimed to investigate the effects of HLA class I genes on susceptibility to type 1 diabetes with different onset ages, in addition to the well-established effects of HLA class II genes. METHODS: A total of 361 patients with type 1 diabetes (192 patients with onset <18 years and 169 patients with onset ≥18 years) and 500 healthy control participants from China were enrolled and genotyped for the HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1 genes using next-generation sequencing. RESULTS: The susceptible DR3 (ß = -0.09, p = 0.0009) and DR4-DQ8 (ß = -0.13, p = 0.0059) haplotypes were negatively associated with onset age, while the protective DR11 (ß = 0.21, p = 0.0314) and DR12 (ß = 0.27, p < 0.0001) haplotypes were positively associated with onset age. After adjustment for linkage disequilibrium with DR-DQ haplotypes, A*11:01:01 was positively associated with onset age (ß = 0.06, p = 0.0370), while the susceptible C*15:02:01 was negatively associated with onset age (ß = -0.21, p = 0.0050). The unit for ß was double square-root (fourth root) transformed years of change in onset age associated with per copy of the HLA haplotype/allele. In addition, B*46:01:01 was protective (OR 0.41, 0.46; pc [corrected for multiple comparisons] = 0.0044, 0.0040), whereas A*24:02:01 (OR 2.71, 2.25; pc = 0.0003, 0.0002) and B*54:01:01 (OR 3.96, 3.79; pc = 0.0018, 0.0004) were predisposing in both the <18 group and the ≥18 group compared with healthy control participants. In the context of DR4-DQ4, A*11:01:01 (61.29% vs 28.26%, pc = 0.0144) was increased while the predisposing A*24:02:01 (19.35% vs 47.83%, pc = 0.0403) was decreased in patients with onset ≥18 years when compared with patients with onset <18 years. CONCLUSIONS/INTERPRETATION: In addition to DR-DQ haplotypes, novel HLA class I alleles were detected to play a role in susceptibility to type 1 diabetes with different onset ages, which could improve the understanding of disease heterogeneity and has implications for the design of future studies.
Asunto(s)
Diabetes Mellitus Tipo 1 , Edad de Inicio , Alelos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/genética , Genes MHC Clase I , Predisposición Genética a la Enfermedad/genética , Antígenos HLA-DQ/genética , Cadenas beta de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Haplotipos/genética , Humanos , Insulina/genéticaRESUMEN
BACKGROUND: The aim of this study was to investigate differences in clinical features and HLA genotypes between adult-onset and childhood-onset patients with type 1 diabetes in a Chinese population. MATERIALS AND METHODS: This study enrolled 716 Han Chinese patients with type 1 diabetes from Guangdong (258 childhood-onset and 458 adult-onset) to compare their clinical features. Of them 214 patients with classical type 1 diabetes (100 childhood-onset and 114 adult-onset) were selected for HLA DR and DQ genotyping by next-generation sequencing. RESULTS: Adult-onset patients were characterized by longer duration of symptoms before diagnosis, lower frequency of DKA at disease onset, less frequent autoantibody positivity, higher serum C-peptide concentrations, and better glycemic control. These findings were replicated in the restricted cohort of 214 patients with classical type 1 diabetes. Compared with childhood-onset patients, adult-onset patients had a lower frequency of the DR9 haplotype, as well as lower frequency of high-risk DR3/DR4 and DR3/DR9 genotypes, but higher frequency of DR3/DR3 genotype and DR3/X, DR4/X or DR9/X (X, non-risk) genotypes. CONCLUSIONS: Adult-onset type 1 diabetic patients with susceptible haplotypes (DR3, DR4 or DR9) were more likely to carry protective DR-DQ haplotypes than childhood-onset patients, which suggested the association between less risk DR-DQ genotypes and the less severe clinical manifestation in adult-onset patients.
Asunto(s)
Diabetes Mellitus Tipo 1 , Antígenos HLA-DQ , Antígenos HLA-DR , Adulto , Edad de Inicio , Niño , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/genética , Genotipo , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Humanos , Gravedad del Paciente , Medición de RiesgoRESUMEN
The study objective was to test the hypothesis that having histocompatible children increases the risk of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), possibly by contributing to the persistence of fetal cells acquired during pregnancy. We conducted a case control study using data from the UC San Francisco Mother Child Immunogenetic Study and studies at the Inova Translational Medicine Institute. We imputed human leukocyte antigen (HLA) alleles and minor histocompatibility antigens (mHags). We created a variable of exposure to histocompatible children. We estimated an average sequence similarity matching (SSM) score for each mother based on discordant mother-child alleles as a measure of histocompatibility. We used logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals. A total of 138 RA, 117 SLE, and 913 control mothers were analyzed. Increased risk of RA was associated with having any child compatible at HLA-B (OR 1.9; 1.2-3.1), DPB1 (OR 1.8; 1.2-2.6) or DQB1 (OR 1.8; 1.2-2.7). Compatibility at mHag ZAPHIR was associated with reduced risk of SLE among mothers carrying the HLA-restriction allele B*07:02 (n = 262; OR 0.4; 0.2-0.8). Our findings support the hypothesis that mother-child histocompatibility is associated with risk of RA and SLE.
Asunto(s)
Artritis Reumatoide/etiología , Histocompatibilidad/inmunología , Lupus Eritematoso Sistémico/etiología , Adulto , Alelos , Artritis Reumatoide/genética , Estudios de Casos y Controles , Niño , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Cadenas beta de HLA-DQ/genética , Cadenas beta de HLA-DQ/metabolismo , Histocompatibilidad/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Lupus Eritematoso Sistémico/genética , Masculino , Madres , Oportunidad Relativa , EmbarazoRESUMEN
Genetic variation within the major histocompatibility complex (MHC) contributes substantial risk for systemic lupus erythematosus, but high gene density, extreme polymorphism and extensive linkage disequilibrium (LD) have made fine mapping challenging. To address the problem, we compared two association techniques in two ancestrally diverse populations, African Americans (AAs) and Europeans (EURs). We observed a greater number of Human Leucocyte Antigen (HLA) alleles in AA consistent with the elevated level of recombination in this population. In EUR we observed 50 different A-C-B-DRB1-DQA-DQB multilocus haplotype sequences per hundred individuals; in the AA sample, these multilocus haplotypes were twice as common compared to Europeans. We also observed a strong narrow class II signal in AA as opposed to the long-range LD observed in EUR that includes class I alleles. We performed a Bayesian model choice of the classical HLA alleles and a frequentist analysis that combined both single nucleotide polymorphisms (SNPs) and classical HLA alleles. Both analyses converged on a similar subset of risk HLA alleles: in EUR HLA- B*08:01 + B*18:01 + (DRB1*15:01 frequentist only) + DQA*01:02 + DQB*02:01 + DRB3*02 and in AA HLA-C*17:01 + B*08:01 + DRB1*15:03 + (DQA*01:02 frequentist only) + DQA*02:01 + DQA*05:01+ DQA*05:05 + DQB*03:19 + DQB*02:02. We observed two additional independent SNP associations in both populations: EUR rs146903072 and rs501480; AA rs389883 and rs114118665. The DR2 serotype was best explained by DRB1*15:03 + DQA*01:02 in AA and by DRB1*15:01 + DQA*01:02 in EUR. The DR3 serotype was best explained by DQA*05:01 in AA and by DQB*02:01 in EUR. Despite some differences in underlying HLA allele risk models in EUR and AA, SNP signals across the extended MHC showed remarkable similarity and significant concordance in direction of effect for risk-associated variants.
Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Complejo Mayor de Histocompatibilidad/genética , Polimorfismo de Nucleótido Simple , Negro o Afroamericano/genética , Femenino , Estudios de Asociación Genética , Haplotipos , Humanos , Masculino , Modelos Genéticos , Población Blanca/genéticaRESUMEN
OBJECTIVE: To investigate whether a child's genotype affects a mother's risk of rheumatoid arthritis (RA) beyond the risk associated with her genotype and to test whether exposure to fetal alleles inherited from the father increases risk of RA among mothers without risk alleles. METHODS: A case-control study was conducted among 1165 mothers (170 cases/995 controls) and their respective 1482 children. We tested the association between having any child with alleles encoding amino acids (AAs) associated with RA including the 'shared epitope' (SE) and DERAA AA sequences at positions 70-74; AA valine, lysine and alanine at positions 11, 71 and 74 of HLA-DRB1; aspartic acid at position 9 of HLA-B and phenylalanine at position 9 of DPB1. We used logistic regression models to estimate OR and 95% CI for each group of alleles, adjusting for maternal genotype and number of live births. RESULTS: We found increased risk of RA among mothers who had any child with SE (OR 3.0; 95% CI 2.0 to 4.6); DERAA (OR 1.7; 95% CI 1.1 to 2.6); or valine (OR 2.3; 95% CI 1.6 to 3.5), lysine (OR 2.3; 95% CI 1.5 to 3.4) and alanine (OR 2.8; 95% CI 1.2 to 6.4) at DRB1 positions 11, 71 and 74, respectively. Among non-carrier mothers, increased risk of RA was associated with having children who carried DERAA (OR 1.7; 95% CI 1.0 to 2.7) and alleles encoding lysine at DRB1 position 71 (OR 2.3; 95% CI 1.5 to 4.8). CONCLUSION: Findings support the hypothesis that a child's genotype can contribute independently to risk of RA among mothers.
Asunto(s)
Artritis Reumatoide/epidemiología , Antígenos HLA-B/genética , Cadenas beta de HLA-DP/genética , Cadenas HLA-DRB1/genética , Exposición Materna/estadística & datos numéricos , Madres/estadística & datos numéricos , Adulto , Anciano , Alelos , Artritis Reumatoide/genética , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Modelos Logísticos , Persona de Mediana Edad , Análisis Multivariante , Oportunidad RelativaRESUMEN
BACKGROUND: Minnesota is home to the largest Somali population in USA, and pediatric diabetes teams are seeing increasing numbers of Somali children with diabetes. OBJECTIVE: To assess the immune basis of diabetes in Somali children in the Twin Cities, Minnesota. METHODS: A total of 31 Somali children ≤19 yr were treated for type 1 diabetes (T1D) at the University of Minnesota Masonic Children's Hospital and Children's Hospitals and Clinics of Minnesota underwent analysis of human leukocyte antigen (HLA) alleles (n = 30) and diabetes autoantibodies [glutamic acid decarboxylase (GAD65), islet antigen 2 (IA-2), zinc transporter 8 (ZnT8); n = 31]. HLA alleles were analyzed in 49 Somalis without diabetes (controls). Anti-transglutaminase autoantibodies (TGA) for celiac disease were also measured. RESULTS: In Somali children with T1D aged 13.5 ± 5 yr (35% female, disease duration 6.5 ± 3.6 yr), the most common HLA allele was DRB1*03:01 (93%, compared with 45% of Somali controls), followed by DRB1*13:02 (27%). There was a relatively low frequency of DR4 (13%). Controls showed a similar pattern. All 31 participants were positive for at least one diabetes autoantibody. Insulin antibodies were positive in 84% (all were on insulin). Excluding insulin antibodies, 23 (74%) subjects tested positive for at least one other diabetes autoantibody; 32% had 1 autoantibody, 32% had 2 autoantibodies, and 10% had 3 autoantibodies. GAD65 autoantibodies were found in 56% of subjects, IA-2 in 29%, and ZnT8 in 26%. Four (13%) were TGA positive. CONCLUSION: The autoantibody and HLA profiles of Somali children with diabetes are consistent with autoimmune diabetes. Their HLA profile is unique with an exceptionally high prevalence of DRB1*03:01 allele and relative paucity of DR4 alleles compared with African Americans with T1D.
Asunto(s)
Diabetes Mellitus Tipo 1/etnología , Diabetes Mellitus Tipo 1/genética , Antígeno HLA-DR3/genética , Adolescente , Estudios de Casos y Controles , Niño , Ciudades/epidemiología , Diabetes Mellitus Tipo 1/inmunología , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Antígeno HLA-DR4/genética , Humanos , Masculino , Minnesota/epidemiología , Somalia/etnología , Adulto JovenRESUMEN
Genetic susceptibility to type 1 diabetes (T1D) is well supported by epidemiologic evidence; however, disease risk cannot be entirely explained by established genetic variants identified so far. This study addresses the question of whether epigenetic modification of the inherited DNA sequence may contribute to T1D susceptibility. Using the Infinium HumanMethylation450 BeadChip array (450k), a total of seven long-term disease-discordant monozygotic (MZ) twin pairs and five pairs of HLA-identical, disease-discordant non-twin siblings (NTS) were examined for associations between DNA methylation (DNAm) and T1D. Strong evidence for global hypomethylation of CpG sites within promoter regions in MZ twins with TID compared to twins without T1D was observed. DNA methylation data were then grouped into three categories of CpG sites for further analysis, including those within: 1) the major histocompatibility complex (MHC) region, 2) non-MHC genes with reported T1D association through genome wide association studies (GWAS), and 3) the epigenome, or remainder of sites that did not include MHC and T1D associated genes. Initial results showed modest methylation differences between discordant MZ twins for the MHC region and T1D-associated CpG sites, BACH2, INS-IGF2, and CLEC16A (DNAm difference range: 2.2%-5.0%). In the epigenome CpG set, the greatest methylation differences were observed in MAGI2, FANCC, and PCDHB16, (DNAm difference range: 6.9%-16.1%). These findings were not observed in the HLA-identical NTS pairs. Targeted pyrosequencing of five candidate CpG loci identified using the 450k array in the original discordant MZ twins produced similar results using control DNA samples, indicating strong agreement between the two DNA methylation profiling platforms. However, findings for the top five candidate CpG loci were not replicated in six additional T1D-discordant MZ twin pairs. Our results indicate global DNA hypomethylation within gene promoter regions may contribute to T1D; however, findings do not support the involvement of large DNAm differences at single CpG sites alone in T1D.
Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 1/genética , Regiones Promotoras Genéticas , Gemelos Monocigóticos , Adolescente , Adulto , Niño , Preescolar , Islas de CpG , Epigénesis Genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Especificidad de Órganos/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Adulto JovenRESUMEN
Systemic lupus erythematosus (SLE) disproportionately affects women of reproductive age. During pregnancy, women are exposed to various sources of fetal material possibly constituting a significant immunologic exposure relevant to the development of SLE. The objective of this study was to investigate whether having any children who carry DRB1 alleles associated with SLE increase the risk of maternal SLE. This case-control study is based on the University of California, San Francisco Mother-Child Immunogenetic Study and from studies at the Inova Translational Medicine Institute. Analyses were conducted using data for 1304 mothers (219 cases/1085 controls) and their respective 1664 children. We selected alleles based on their known association with risk of SLE (DRB1*03:01, *15:01, or *08:01) or Epstein-Barr virus (EBV) glycoproteins (*04:01) due to the established EBV association with SLE risk. We used logistic regression models to estimate odds ratios (OR) and 95% confidence intervals (CI) for each allele of interest, taking into account maternal genotype and number of live births. We found an increase in risk of maternal SLE associated with exposure to children who inherited DRB1*04:01 from their father (OR 1.9; 95% CI, 1.1-3.2), among *04:01 allele-negative mothers. Increased risk was only present among mothers who were positive for one or more SLE risk-associated alleles (*03:01, *15:01 and/or *08:01). We did not find increased risk of maternal SLE associated with any other tested allele. These findings support the hypothesis that a child's alleles inherited from the father influence a mother's subsequent risk of SLE.
Asunto(s)
Genotipo , Cadenas HLA-DRB1/genética , Lupus Eritematoso Sistémico/etiología , Intercambio Materno-Fetal/genética , Intercambio Materno-Fetal/inmunología , Adulto , Alelos , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Estudios de Casos y Controles , Niño , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lupus Eritematoso Sistémico/epidemiología , Persona de Mediana Edad , Oportunidad Relativa , EmbarazoRESUMEN
The major histocompatibility complex (MHC) region is strongly associated with multiple sclerosis (MS) susceptibility. HLA-DRB1*15:01 has the strongest effect, and several other alleles have been reported at different levels of validation. Using SNP data from genome-wide studies, we imputed and tested classical alleles and amino acid polymorphisms in 8 classical human leukocyte antigen (HLA) genes in 5,091 cases and 9,595 controls. We identified 11 statistically independent effects overall: 6 HLA-DRB1 and one DPB1 alleles in class II, one HLA-A and two B alleles in class I, and one signal in a region spanning from MICB to LST1. This genomic segment does not contain any HLA class I or II genes and provides robust evidence for the involvement of a non-HLA risk allele within the MHC. Interestingly, this region contains the TNF gene, the cognate ligand of the well-validated TNFRSF1A MS susceptibility gene. The classical HLA effects can be explained to some extent by polymorphic amino acid positions in the peptide-binding grooves. This study dissects the independent effects in the MHC, a critical region for MS susceptibility that harbors multiple risk alleles.
Asunto(s)
Estudio de Asociación del Genoma Completo , Cadenas HLA-DRB1/genética , Complejo Mayor de Histocompatibilidad/genética , Esclerosis Múltiple/genética , Alelos , Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Cadenas beta de HLA-DP/genética , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Desequilibrio de Ligamiento , Proteínas de la Membrana/genética , Esclerosis Múltiple/patología , Polimorfismo de Nucleótido Simple , Receptores Tipo I de Factores de Necrosis Tumoral/genéticaRESUMEN
We have performed a meta-analysis of the major-histocompatibility-complex (MHC) region in systemic lupus erythematosus (SLE) to determine the association with both SNPs and classical human-leukocyte-antigen (HLA) alleles. More specifically, we combined results from six studies and well-known out-of-study control data sets, providing us with 3,701 independent SLE cases and 12,110 independent controls of European ancestry. This study used genotypes for 7,199 SNPs within the MHC region and for classical HLA alleles (typed and imputed). Our results from conditional analysis and model choice with the use of the Bayesian information criterion show that the best model for SLE association includes both classical loci (HLA-DRB1(∗)03:01, HLA-DRB1(∗)08:01, and HLA-DQA1(∗)01:02) and two SNPs, rs8192591 (in class III and upstream of NOTCH4) and rs2246618 (MICB in class I). Our approach was to perform a stepwise search from multiple baseline models deduced from a priori evidence on HLA-DRB1 lupus-associated alleles, a stepwise regression on SNPs alone, and a stepwise regression on HLA alleles. With this approach, we were able to identify a model that was an overwhelmingly better fit to the data than one identified by simple stepwise regression either on SNPs alone (Bayes factor [BF] > 50) or on classical HLA alleles alone (BF > 1,000).
Asunto(s)
Alelos , Antígenos HLA/genética , Lupus Eritematoso Sistémico/genética , Complejo Mayor de Histocompatibilidad/genética , Población Blanca/genética , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genotipo , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Cadenas alfa de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Haplotipos , Humanos , Polimorfismo de Nucleótido SimpleRESUMEN
Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing beta cells in the pancreas. Prevention of T1D will require the ability to detect and modulate the autoimmune process before the clinical onset of disease. Genetic screening is a logical first step in identification of future patients to test prevention strategies. Susceptibility to T1D includes a strong genetic component, with the strongest risk attributable to genes that encode the classical Human Leukocyte Antigens (HLA). Other genetic loci, both immune and non-immune genes, contribute to T1D risk; however, the results of decades of small and large genetic linkage and association studies show clearly that the HLA genes confer the most disease risk and protection and can be used as part of a prediction strategy for T1D. Current predictive genetic models, based on HLA and other susceptibility loci, are effective in identifying the highest-risk individuals in populations of European descent. These models generally include screening for the HLA haplotypes "DR3" and "DR4." However, genetic variation among racial and ethnic groups reduces the predictive value of current models that are based on low resolution HLA genotyping. Not all DR3 and DR4 haplotypes are high T1D risk; some versions, rare in Europeans but high frequency in other populations, are even T1D protective. More information is needed to create predictive models for non-European populations. Comparative studies among different populations are needed to complete the knowledge base for the genetics of T1D risk to enable the eventual development of screening and intervention strategies applicable to all individuals, tailored to their individual genetic background. This review summarizes the current understanding of the genetic basis of T1D susceptibility, focusing on genes of the immune system, with particular emphasis on the HLA genes.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Predisposición Genética a la Enfermedad , Inmunogenética , Alelos , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Estudios de Asociación Genética , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Polimorfismo GenéticoRESUMEN
More than 50 years have elapsed since the association of human leukocyte antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods for identification of HLA have progressed from cell based to DNA based, and the number of recognized HLA variants has grown from a few to tens of thousands. Current genotyping methodology allows for exact identification of all HLA-encoding genes in an individual's genome, with statistical analysis methods evolving to digest the enormous amount of data that can be produced at an astonishing rate. The HLA region of the genome has been repeatedly shown to be the most important genetic risk factor for T1D, and the original reported associations have been replicated, refined, and expanded. Even with the remarkable progress through 50 years and over 5,000 reports, a comprehensive understanding of all effects of HLA on T1D remains elusive. This report represents a summary of the field as it evolved and as it stands now, enumerating many past and present challenges, and suggests possible paradigm shifts for moving forward with future studies in hopes of finally understanding all the ways in which HLA influences the pathophysiology of T1D.
Asunto(s)
Diabetes Mellitus Tipo 1 , Predisposición Genética a la Enfermedad , Antígenos HLA , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/historia , Diabetes Mellitus Tipo 1/inmunología , Predisposición Genética a la Enfermedad/historia , Genotipo , Historia del Siglo XX , Historia del Siglo XXI , Antígenos HLA/genética , Antígenos HLA/historia , Antígenos HLA/inmunología , Factores de RiesgoRESUMEN
HLA genotyping was performed on 99 type 1 diabetes (T1D) patients and 200 controls from Mali. Next-generation sequencing of the classical HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1, and -DPB1 loci revealed strong T1D association for all loci except HLA-C and -DPA1. Class II association is stronger than class I association, with most observed associations predisposing or protective as expected based on previous studies. For example, HLA-DRB1*03:01, HLA-DRB1*09:01, and HLA-DRB1*04:05 predispose for T1D, whereas HLA-DRB1*15:03 is protective. HLA-DPB1*04:02 (OR = 12.73, p = 2.92 × 10-05 ) and HLA-B*27:05 (OR = 21.36, p = 3.72 × 10-05 ) appear highly predisposing, although previous studies involving multiple populations have reported HLA-DPB1*04:02 as T1D-protective and HLA-B*27:05 as neutral. This result may reflect the linkage disequilibrium between alleles on the extended HLA-A*24:02~HLA-B*27:05~HLA-C*02:02~HLA-DRB1*04:05~HLA-DRB4*01:03~HLA-DQB1*02:02~HLA-DQA1*02:01~HLA-DPB1*04:02~HLA-DPA1*01:03 haplotype in this population rather than an effect of either allele itself. Individual amino acid (AA) analyses are consistent with most T1D association attributable to HLA class II rather than class I in this data set. AA-level analyses reveal previously undescribed differences of the HLA-C locus from the HLA-A and HLA-B loci, with more polymorphic positions, spanning a larger portion of the gene. This may reflect additional mechanisms for HLA-C to influence T1D risk, for example, through expression differences or through its role as the dominant ligand for killer cell immunoglobulin-like receptors (KIR). Comparison of these data to those from larger studies and on other populations may facilitate T1D prediction and help elucidate elusive mechanisms of how HLA contributes to T1D risk and autoimmunity.
Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Genotipo , Diabetes Mellitus Tipo 1/genética , Antígenos HLA-C/genética , Cadenas HLA-DRB1/genética , Frecuencia de los Genes , Malí , Alelos , Haplotipos , Antígenos HLA-B/genética , Antígenos HLA-A/genéticaRESUMEN
Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.
Asunto(s)
Linfocitos T CD8-positivos , Células Asesinas Naturales , Receptor 2 Gatillante de la Citotoxidad Natural , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Receptor 2 Gatillante de la Citotoxidad Natural/metabolismo , Citomegalovirus/inmunología , Haplotipos , Activación de Linfocitos/inmunologíaRESUMEN
Hepatitis B virus (HBV) vaccine escape mutants (VEM) are increasingly described, threatening progress in control of this virus worldwide. Here we studied the relationship between host genetic variation, vaccine immunogenicity and viral sequences implicating VEM emergence. In a cohort of 1,096 Bangladeshi children, we identified human leukocyte antigen (HLA) variants associated with response vaccine antigens. Using an HLA imputation panel with 9,448 south Asian individuals DPB1*04:01 was associated with higher HBV antibody responses (p=4.5×10-30). The underlying mechanism is a result of higher affinity binding of HBV surface antigen epitopes to DPB1*04:01 dimers. This is likely a result of evolutionary pressure at the HBV surface antigen 'a-determinant' segment incurring VEM specific to HBV. Prioritizing pre-S isoform HBV vaccines may tackle the rise of HBV vaccine evasion.
RESUMEN
A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99 x 10(-16)). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53 x 10(-12)), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80 x 10(-13). Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE-associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation.
Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Complejo Mayor de Histocompatibilidad , Polimorfismo de Nucleótido Simple , Adulto , Femenino , Antígenos HLA-DR/genética , Cadenas HLA-DRB1 , Humanos , Masculino , Persona de Mediana Edad , Población Blanca/genética , Adulto JovenRESUMEN
Type 1 diabetes (T1D) is one of the most widely studied complex genetic disorders, and the genes in HLA are reported to account for approximately 40-50% of the familial aggregation of T1D. The major genetic determinants of this disease are polymorphisms of class II HLA genes encoding DQ and DR. The DR-DQ haplotypes conferring the highest risk are DRB1*03:01-DQA1*05:01-DQB1*02:01 (abbreviated "DR3") and DRB1*04:01/02/04/05/08-DQA1*03:01-DQB1*03:02/04 (or DQB1*02; abbreviated "DR4"). The risk is much higher for the heterozygote formed by these two haplotypes (OR = 16.59; 95% CI, 13.7-20.1) than for either of the homozygotes (DR3/DR3, OR = 6.32; 95% CI, 5.12-7.80; DR4/DR4, OR = 5.68; 95% CI, 3.91). In addition, some haplotypes confer strong protection from disease, such as DRB1*15:01-DQA1*01:02-DQB1*06:02 (abbreviated "DR2"; OR = 0.03; 95% CI, 0.01-0.07). After adjusting for the genetic correlation with DR and DQ, significant associations can be seen for HLA class II DPB1 alleles, in particular, DPB1*04:02, DPB1*03:01, and DPB1*02:02. Outside of the class II region, the strongest susceptibility is conferred by class I allele B*39:06 (OR =10.31; 95% CI, 4.21-25.1) and other HLA-B alleles. In addition, several loci in the class III region are reported to be associated with T1D, as are some loci telomeric to class I. Not surprisingly, current approaches for the prediction of T1D in screening studies take advantage of genotyping HLA-DR and HLA-DQ loci, which is then combined with family history and screening for autoantibodies directed against islet-cell antigens. Inclusion of additional moderate HLA risk haplotypes may help identify the majority of children with T1D before the onset of the disease.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Predisposición Genética a la Enfermedad/genética , HumanosRESUMEN
BACKGROUND: genetic susceptibility to infection is mediated by numerous host factors, including the highly diverse, classical human leukocyte antigen (HLA) genes, which are critical genetic determinants of immunity. We systematically evaluated the effect of HLA alleles and haplotypes on susceptibility to 12 common enteric infections in children during the first year of life in an urban slum of Dhaka, Bangladesh. METHODS: a birth cohort of 601 Bangladeshi infants was prospectively monitored for diarrhoeal disease. Each diarrhoeal stool sample was analyzed for enteric pathogens by multiplex TaqMan Array Card (TAC). High resolution genotyping of HLA class I (A and B) and II (DRB1, DQA1, and DQB1) genes was performed by next-generation sequencing. We compared the frequency of HLA alleles and haplotypes between infected and uninfected children. FINDINGS: we identified six individual allele associations and one five-locus haplotype association. One allele was associated with protection: A*24:02 - EAEC. Five alleles were associated with increased risk: A*24:17 - typical EPEC, B*15:01 - astrovirus, B*38:02 - astrovirus, B*38:02 - Cryptosporidium and DQA1*01:01 - Cryptosporidium. A single five-locus haplotype was associated with protection: A*11:01~B*15:02~DRB1*12:02~DQA1*06:01~DQB1*03:01- adenovirus 40/41. INTERPRETATION: our findings suggest a role for HLA in susceptibility to early enteric infection for five pathogens. Understanding the genetic contribution of HLA in susceptibility has important implications in vaccine design and understanding regional differences in incidence of enteric infection. FUNDING: this research was supported by the National Institute of Health (NIH) and the Bill and Melinda Gates Foundation.
Asunto(s)
Infecciones por Astroviridae/genética , Criptosporidiosis/genética , Infecciones por Escherichia coli/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Alelos , Bangladesh , Haplotipos , Humanos , LactanteRESUMEN
BACKGROUND: Although human leukocyte antigen (HLA) DQ and DR loci appear to confer the strongest genetic risk for type 1 diabetes, more detailed information is required for other loci within the HLA region to understand causality and stratify additional risk factors. The Type 1 Diabetes Genetics Consortium (T1DGC) study design included high-resolution genotyping of HLA-A, B, C, DRB1, DQ, and DP loci in all affected sibling pair and trio families, and cases and controls, recruited from four networks worldwide, for analysis with clinical phenotypes and immunological markers. PURPOSE: In this article, we present the operational strategy of training, classification, reporting, and quality control of HLA genotyping in four laboratories on three continents over nearly 5 years. METHODS: Methods to standardize HLA genotyping at eight loci included: central training and initial certification testing; the use of uniform reagents, protocols, instrumentation, and software versions; an automated data transfer; and the use of standardized nomenclature and allele databases. We implemented a rigorous and consistent quality control process, reinforced by repeated workshops, yearly meetings, and telephone conferences. RESULTS: A total of 15,246 samples have been HLA genotyped at eight loci to four-digit resolution; an additional 6797 samples have been HLA genotyped at two loci. The genotyping repeat rate decreased significantly over time, with an estimated unresolved Mendelian inconsistency rate of 0.21%. Annual quality control exercises tested 2192 genotypes (4384 alleles) and achieved 99.82% intra-laboratory and 99.68% inter-laboratory concordances. LIMITATIONS: The chosen genotyping platform was unable to distinguish many allele combinations, which would require further multiple stepwise testing to resolve. For these combinations, a standard allele assignment was agreed upon, allowing further analysis if required. CONCLUSIONS: High-resolution HLA genotyping can be performed in multiple laboratories using standard equipment, reagents, protocols, software, and communication to produce consistent and reproducible data with minimal systematic error. Many of the strategies used in this study are generally applicable to other large multi-center studies.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Genotipo , Antígenos HLA/genética , Cooperación Internacional , Algoritmos , Bioensayo , Técnicas de Laboratorio Clínico , Diabetes Mellitus Tipo 1/epidemiología , Educación , Salud Global , Antígenos HLA/análisis , Humanos , Linaje , Polimorfismo Genético , Control de Calidad , Medición de RiesgoRESUMEN
The availability of both HLA data and genotypes for thousands of SNPs across the major histocompatibility complex (MHC) in 1240 complete families of the Type 1 Diabetes Genetics Consortium allowed us to analyze the occurrence and extent of megabase contiguous identity for founder chromosomes from unrelated individuals. We identified 82 HLA-defined haplotype groups, and within these groups, megabase regions of SNP identity were readily apparent. The conserved chromosomes within the 82 haplotype groups comprise approximately one third of the founder chromosomes. It is currently unknown whether such frequent conservation for groups of unrelated individuals is specific to the MHC, or if initial binning by highly polymorphic HLA alleles facilitated detection of a more general phenomenon within the MHC. Such common identity, specifically across the MHC, impacts type 1 diabetes susceptibility and may impact transplantation between unrelated individuals.