Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 2): 114577, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252830

RESUMEN

Cadmium (Cd) is one of the most threatening soil and water contaminants in agricultural settings. In previous studies, we observed that Cd affects the metabolism and physiology of tomato (Solanum lycopersicum) plants even after short-term exposure. The objective of this research was to use cross-genotype grafting to distinguish between root- and shoot-mediated responses of tomato genotypes with contrasting Cd tolerance at the early stages of Cd exposure. This study provides the first report of organ-specific contributions in two tomato genotypes with contrasting Cd tolerance: Solanum lycopersicum cv. Calabash Rouge and Solanum lycopersicum cv. Pusa Ruby (which have been classified and further characterized as sensitive (S) and tolerant (T) to Cd, respectively). Scion S was grafted onto rootstock S (S/S) and rootstock T (S/T), and scion T was grafted onto rootstock T (T/T) and rootstock S (T/S). A 35 µM cadmium chloride (CdCl2) treatment was used for stress induction in a hydroponic system. Both shoot and root contributions to Cd responses were observed, and they varied in a genotype- and/or organ-dependent manner for nutrient concentrations, oxidative stress parameters, antioxidant enzymes, and transporters gene expression. The findings overall provide evidence for the dominant role of the tolerant rootstock system in conferring reduced Cd uptake and accumulation. The lowest leaf Cd concentrations were observed in T/T (215.11 µg g-1 DW) and S/T (235.61 µg g-1 DW). Cadmium-induced decreases in leaf dry weight were observed only in T/S (-8.20%) and S/S (-13.89%), which also were the only graft combinations that showed decreases in chlorophyll content (-3.93% in T/S and -4.05% in S/S). Furthermore, the results show that reciprocal grafting is a fruitful approach for gaining insights into the organ-specific modulation of Cd tolerance and accumulation during the early stages of Cd exposure.


Asunto(s)
Cadmio , Solanum lycopersicum , Cadmio/toxicidad , Cadmio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Raíces de Plantas/metabolismo , Hojas de la Planta , Genotipo
3.
Ecotoxicology ; 28(9): 1046-1055, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31502144

RESUMEN

This study aimed to investigate the mode of action of cadmium (Cd) toxicity at cell level, especially at early stages of plant exposure. Tomato seedlings were cultivated in growth media containing from 0.1 to 70 µM CdCl2 for 24 h. Mitotic index, chromosome abnormality, DNA integrity and organization of tubulin-based structures were assessed in root cells. As higher the Cd concentration in the growth media, higher was the DNA damage intensity and the occurrence of chromosomal abnormalities that included chromosome lost, bridges, stickiness, C-metaphase and polyploidy. The profile of chromosomal aberrations also varied with elevated Cd concentration, being observed increases in the frequency of chromosome stickiness. The mitotic index was reduced at the lowest Cd concentration, but such reduction was statistically similar to that detected at the highest concentration, suggesting that mitotic depression is a rapid outcome and, at same time, a Cd-induced effect that is limited at the first 24 h of direct root exposure to this metal. Under exposure to 20 µM CdCl2, heterogenous distribution of the spindle fibers, formation of two spindle complexes in both of the cell poles, absence of centrosome center, polarization of the spindle fibers during cell division, and non-uniform tubulin deposition in microtubule and phragmoplast were noticed. The results indicate that the tubulin-dependent components of cytoskeleton are Cd targets, and the sensitivity of tubulin-based structures to Cd exposure depends on cell cycle phase. Moreover, DNA damage intensity and chromosomal abnormality profile can be employed as markers of Cd toxicity level.


Asunto(s)
Cadmio/toxicidad , Ciclo Celular/efectos de los fármacos , Inestabilidad Cromosómica/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Solanum lycopersicum/efectos de los fármacos , Plantones/efectos de los fármacos
4.
Sci Total Environ ; 789: 147885, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34323842

RESUMEN

The present study aimed to investigate the Cd-induced transgenerational effects on plants. Grafted tomato plants, which exhibited the same cultivar as scion and distinct cultivars with contrasting Cd-tolerance as rootstocks, were grown in soil without and with artificial addition of Cd (less than 2.0, and 6.9 mg kg-1 of Cd, respectively) in a pot experiment carried out in a greenhouse. Their fruits were harvested to extract seeds (i.e., the progenies), which were sown over either Cd-free (control) or Cd-containing germitest paper (germination testing paper with 0 and 35 µM of CdCl2, respectively) and grown in a growth chamber. The immediate progeny of all grafting combinations from stressed plants presented an elevated germinability, despite high internal Cd concentration. When sown in Cd-containing germitest paper, the immediate progeny of plants grown in soil with no Cd addition was generally able to maintain or even increase the content of carotenoids and chlorophylls a and b (up to 93.3, 62.8 and 76.1%, respectively), indicating a Cd-induced hormetic effect on photosynthetic pigments. Two of the grafting combinations from stressed plants yielded seeds that generated seedlings with enhanced dry mass when they were sown in Cd-free media (~41%), suggesting a Cd-induced transgenerational enhancement of biomass production. Because only one tomato cultivar was used as scion, data indicated that type and degree of Cd-induced transgenerational effects depend strongly on signals generated and/or processed in roots of the parental plants. When sown in Cd-contaminated germitest paper, the immediate progeny of Cd-treated plants presented major reductions in the leaf area (35-69%) and content of photosynthetic pigments (57-93%) in comparison to the progeny from control plants. However, one of the grafting combinations exhibited satisfactory performance after "double" exposure to Cd, showing 91% of the biomass that was produced in the seedlings of control seeds from control plants. Further investigation indicated that adjustments in the chlorophyll fluorescence behavior might counterbalance losses in leaf pigments and area. Taken together, our data provide new insights on the origin, outcomes and mode of action of the Cd-induced transgenerational effects.

5.
Protoplasma ; 255(4): 989-999, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29354852

RESUMEN

Although negative effects on the offspring fitness can be triggered by the mother-plant exposure to environmental stresses, some plants are able to "remember" past incidents and enhance the progeny tolerance. Here, the mineral profile, cytogenetic modifications, and physiological potential of seeds from two tomato cultivars, with contrasting tolerance degrees to cadmium (Cd) toxicity, were evaluated after plant exposure to this metal. Both cultivars exhibited high Cd translocation to the seeds; however, the tolerant tomato accumulated more Cd than did the sensitive one. As a consequence of the Cd accumulation, reductions in the Mn concentration in Cd-challenged plants were detected. Surprisingly, seed germination and vigor were increased in the tolerant tomato cultivar after Cd exposure, despite increases in the chromosomal abnormalities. By contrast, seeds from the sensitive cultivar exhibited no changes in their physiological potential after Cd exposure, despite Cd-induced reductions in the mitotic index. Moreover, bunch position exerted effects on the vigor and type of chromosomal abnormality. The results show that maternal plant exposure to Cd can affect tomato offspring by changing the seed physiological potential, and such effect can be partially explained by alterations in the seed-derived elements (essential and non-essential) and genotype-dependent tolerance mechanisms.


Asunto(s)
Cadmio/toxicidad , Germinación/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Semillas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA