RESUMEN
Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies.
Asunto(s)
Norovirus/fisiología , Norovirus/patogenicidad , Replicación Viral/fisiología , Pez Cebra/virología , Animales , Antivirales/administración & dosificación , Infecciones por Caliciviridae/virología , Enfermedades Transmitidas por los Alimentos/virología , Gastroenteritis/virología , Interacciones Microbiota-Huesped , Humanos , Larva/virología , Metagenómica , Modelos Animales , Norovirus/genética , Cultivo de Virus/métodos , Replicación Viral/efectos de los fármacosRESUMEN
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting ß-cells and neurons and underline the existence of transnosology pathways in diabetes and its co-morbidities.
Asunto(s)
Células Secretoras de Insulina/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Autofagia , Sitios de Unión , Línea Celular Tumoral , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Hipocampo/citología , Masculino , Neurogénesis , Neuronas/citología , Células PC12 , Polimorfismo Genético , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/química , Factores de Transcripción/genéticaRESUMEN
Pancreatic beta cell failure is the central event leading to diabetes. Beta cells share many phenotypic traits with neurons, and proper beta cell function relies on the activation of several neuron-like transcription programs. Regulation of gene expression by alternative splicing plays a pivotal role in brain, where it affects neuronal development, function, and disease. The role of alternative splicing in beta cells remains unclear, but recent data indicate that splicing alterations modulated by both inflammation and susceptibility genes for diabetes contribute to beta cell dysfunction and death. Here we used RNA sequencing to compare the expression of splicing-regulatory RNA-binding proteins in human islets, brain, and other human tissues, and we identified a cluster of splicing regulators that are expressed in both beta cells and brain. Four of them, namely Elavl4, Nova2, Rbox1, and Rbfox2, were selected for subsequent functional studies in insulin-producing rat INS-1E, human EndoC-ßH1 cells, and in primary rat beta cells. Silencing of Elavl4 and Nova2 increased beta cell apoptosis, whereas silencing of Rbfox1 and Rbfox2 increased insulin content and secretion. Interestingly, Rbfox1 silencing modulates the splicing of the actin-remodeling protein gelsolin, increasing gelsolin expression and leading to faster glucose-induced actin depolymerization and increased insulin release. Taken together, these findings indicate that beta cells share common splicing regulators and programs with neurons. These splicing regulators play key roles in insulin release and beta cell survival, and their dysfunction may contribute to the loss of functional beta cell mass in diabetes.
Asunto(s)
Células Secretoras de Insulina/citología , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Animales , Apoptosis , Línea Celular , Supervivencia Celular , Células Cultivadas , Proteína 4 Similar a ELAV/genética , Proteína 4 Similar a ELAV/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , RatasRESUMEN
Alternative splicing (AS) is a fundamental mechanism for the regulation of gene expression. It affects more than 90% of human genes but its role in the regulation of pancreatic beta cells, the producers of insulin, remains unknown. Our recently published data indicated that the 'neuron-specific' Nova1 splicing factor is expressed in pancreatic beta cells. We have presently coupled specific knockdown (KD) of Nova1 with RNA-sequencing to determine all splice variants and downstream pathways regulated by this protein in beta cells. Nova1 KD altered the splicing of nearly 5000 transcripts. Pathway analysis indicated that these genes are involved in exocytosis, apoptosis, insulin receptor signaling, splicing and transcription. In line with these findings, Nova1 silencing inhibited insulin secretion and induced apoptosis basally and after cytokine treatment in rodent and human beta cells. These observations identify a novel layer of regulation of beta cell function, namely AS controlled by key splicing regulators such as Nova1.
Asunto(s)
Empalme Alternativo , Células Secretoras de Insulina/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Apoptosis , Calcio/metabolismo , Citocinas/farmacología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Antígeno Ventral Neuro-Oncológico , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Ratas Wistar , Receptor de Insulina/genética , Receptor de Insulina/metabolismoRESUMEN
Mutations in human Gli-similar (GLIS) 3 protein cause neonatal diabetes. The GLIS3 gene region has also been identified as a susceptibility risk locus for both type 1 and type 2 diabetes. GLIS3 plays a role in the generation of pancreatic beta cells and in insulin gene expression, but there is no information on the role of this gene on beta cell viability and/or susceptibility to immune- and metabolic-induced stress. GLIS3 knockdown (KD) in INS-1E cells, primary FACS-purified rat beta cells, and human islet cells decreased expression of MafA, Ins2, and Glut2 and inhibited glucose oxidation and insulin secretion, confirming the role of this transcription factor for the beta cell differentiated phenotype. GLIS3 KD increased beta cell apoptosis basally and sensitized the cells to death induced by pro-inflammatory cytokines (interleukin 1ß + interferon-γ) or palmitate, agents that may contribute to beta cell loss in respectively type 1 and 2 diabetes. The increased cell death was due to activation of the intrinsic (mitochondrial) pathway of apoptosis, as indicated by cytochrome c release to the cytosol, Bax translocation to the mitochondria and activation of caspases 9 and 3. Analysis of the pathways implicated in beta cell apoptosis following GLIS3 KD indicated modulation of alternative splicing of the pro-apoptotic BH3-only protein Bim, favouring expression of the pro-death variant BimS via inhibition of the splicing factor SRp55. KD of Bim abrogated the pro-apoptotic effect of GLIS3 loss of function alone or in combination with cytokines or palmitate. The present data suggest that altered expression of the candidate gene GLIS3 may contribute to both type 1 and 2 type diabetes by favouring beta cell apoptosis. This is mediated by alternative splicing of the pro-apoptotic protein Bim and exacerbated formation of the most pro-apoptotic variant BimS.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Anciano , Empalme Alternativo/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Proteínas de Unión al ADN , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 2/etiología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Persona de Mediana Edad , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Proteínas Represoras , TransactivadoresRESUMEN
AIMS/HYPOTHESIS: Beta cell destruction in human type 1 diabetes occurs through the interplay of genetic and environmental factors, and is mediated by immune cell infiltration of pancreatic islets. In this study, we explored the role of mast cells as an additional agent in the pathogenesis of type 1 diabetes insulitis. METHODS: Pancreatic tissue from donors without diabetes and with type 1 and 2 diabetes was studied using different microscopy techniques to identify islet-infiltrating cells. The direct effects of histamine exposure on isolated human islets and INS-1E cells were assessed using cell-survival studies and molecular mechanisms. RESULTS: A larger number of mast cells were found to infiltrate pancreatic islets in samples from donors with type 1 diabetes, compared with those from donors without diabetes or with type 2 diabetes. Evidence of mast cell degranulation was observed, and the extent of the infiltration correlated with beta cell damage. Histamine, an amine that is found at high levels in mast cells, directly contributed to beta cell death in isolated human islets and INS-1E cells via a caspase-independent pathway. CONCLUSIONS/INTERPRETATION: These findings suggest that mast cells might be responsible, at least in part, for immune-mediated beta cell alterations in human type 1 diabetes. If this is the case, inhibition of mast cell activation and degranulation might act to protect beta cells in individuals with type 1 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1/patología , Islotes Pancreáticos/patología , Mastocitos/patología , Páncreas/patología , Adulto , Anciano , Supervivencia Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
The liver plays an essential role in maternal metabolic adaptation during late pregnancy. With regard to lipid metabolism, increased secretion of very low-density lipoprotein (VLDL) is characteristic of late pregnancy. Despite this well-described metabolic plasticity, the molecular changes underlying the hepatic adaptation to pregnancy remain unclear. As AMPK is a key intracellular energy sensor, we investigated whether this protein assumes a causal role in the hepatic adaptation to pregnancy. Pregnant Wistar rats were treated with vehicle or AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) for 5 days starting at gestational day 14. At the end of treatment, the rats were subjected to an intraperitoneal pyruvate tolerance test and in situ liver perfusion with pyruvate. The livers were processed for Western blot analysis, quantitative PCR, thin-layer chromatography, enzymatic activity, and glycogen content measurements. Blood biochemical profiles were also assessed. We found that AMPK and ACC phosphorylation were reduced in the livers of pregnant rats in parallel with a reduced level of hepatic gluconeogenesis of pyruvate. This effect was accompanied by both a reduction in the levels of hepatic triglycerides (TG) and an increase in circulating levels of TG. Treatment with AICAR restored hepatic levels of TG to those observed in nonpregnant rats. Additionally, AMPK activation reduced the upregulation of genes related to VLDL synthesis and secretion observed in the livers of pregnant rats. We conclude that the increased secretion of hepatic TG in late pregnancy is concurrent with a transcriptional profile that favors VLDL production. This transcriptional profile results from the reduction in hepatic AMPK activity.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Femenino , Regulación de la Expresión Génica/fisiología , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/fisiología , Glucógeno/química , Glucógeno/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Embarazo , Ratas , Ratas Wistar , Ribonucleótidos/farmacología , Triglicéridos/metabolismoRESUMEN
The rise in type 1 diabetes (T1D) incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA) and a diabetogenic enterovirus (Coxsackievirus B5). Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR) promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1). Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Infecciones por Coxsackievirus/metabolismo , Enterovirus Humano B/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Animales , Proteína 11 Similar a Bcl2 , Línea Celular , Supervivencia Celular , Infecciones por Coxsackievirus/patología , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/virología , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/virología , Masculino , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Fosforilación , Ratas , Ratas WistarRESUMEN
Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in ß-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2α phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in ß-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in ß-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.
Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Apoptosis/fisiología , Islotes Pancreáticos/metabolismo , Lactancia/fisiología , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Células Cultivadas , Femenino , Insulina/metabolismo , Islotes Pancreáticos/citología , Modelos Animales , Fosforilación/fisiología , Prolactina/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Ratas , Ratas Wistar , Transducción de Señal , Factor de Transcripción CHOP/metabolismoRESUMEN
Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phospho-ERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Dexametasona/farmacología , Fosfatasa 1 de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Lactancia/metabolismo , Fosforilación/efectos de los fármacos , Análisis de Varianza , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Relación Dosis-Respuesta a Droga , Femenino , Glucocorticoides/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Embarazo , RatasRESUMEN
The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration and neuroprotection. The aim of this study was to evaluate the effects of unilateral retinal ablation on the expression of the cannabinoid receptor subtype 1 (CB(1)) at both protein and mRNA levels in the optic tectum of the adult chick brain. After different survival times postlesion (2-30 days), the chick brains were subjected to immunohistochemical, immunoblotting, and real-time PCR procedures to evaluate CB(1) expression. TUNEL and Fluoro-Jade B were used to verify the possible occurrence of cell death, and immunostaining for the microtubule-associated protein MAP-2 was performed to verify possible dendritic remodeling after lesions. No cell death could be observed in the deafferented tectum, at least up to 30 days postlesion, although Fluoro-Jade B could reveal degenerating axons and terminals. Retinal ablation seems to generate an increase of CB(1) protein in the optic tectum and other retinorecipient visual areas, which paralleled an increase in MAP-2 staining. On the other hand, CB(1) mRNA levels were not changed after retinal ablation. Our results reveal that CB(1) expression in visual structures of the adult chick brain may be negatively regulated by the retinal innervation. The increase of CB(1) receptor expression observed after retinal removal indicates that these receptors are not presynaptic in retinal axons projecting to the tectum and suggests a role of the cannabinoid system in plasticity processes ensuing after lesions.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Receptor Cannabinoide CB1/metabolismo , Retina/fisiología , Colículos Superiores/metabolismo , Regulación hacia Arriba/fisiología , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Pollos , Fluoresceínas , Etiquetado Corte-Fin in Situ/métodos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Degeneración Nerviosa/metabolismo , Compuestos Orgánicos , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/genética , Retina/crecimiento & desarrollo , Factores de TiempoRESUMEN
During pregnancy, the maternal endocrine pancreas undergoes, as a consequence of placental lactogens and prolactin (PRL) action, functional changes that are characterized by increased glucose-induced insulin secretion. After delivery, the maternal endocrine pancreas rapidly returns to non-pregnant state, which is mainly attributed to the increased serum levels of glucocorticoids (GCs). Although GCs are known to decrease insulin secretion and counteract PRL action, the mechanisms for these effects are poorly understood. We have previously demonstrated that signal transducer and activator of transcription 3 (STAT3) is increased in islets treated with PRL. In the present study, we show that STAT3 expression and serine phosphorylation are increased in pancreatic islets at the end of pregnancy (P19). STAT3 serine phosphorylation rapidly returned to basal levels 3 days after delivery (L3). The expression of the sarcoendoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2), a crucial protein involved in the regulation of calcium handling in beta-cells, was also increased in P19, returning to basal levels at L3. PRL increased SERCA2 and STAT3 expressions and STAT3 serine phosphorylation in RINm5F cells. The upregulation of SERCA2 by PRL was abolished after STAT3 knockdown. Moreover, PRL-induced STAT3 serine phosphorylation and SERCA2 expression were inhibited by dexamethasone (DEX). Insulin secretion from islets of P19 rats pre-incubated with thapsigargin and L3 rats showed a dramatic suppression of first phase of insulin release. The present results indicate that PRL regulates SERCA2 expression by a STAT3-dependent mechanism. PRL effect is counteracted by DEX and might contribute to the adaptation of maternal endocrine pancreas during the peripartum period.
Asunto(s)
Glucocorticoides/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Prolactina/metabolismo , Factor de Transcripción STAT3/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Adaptación Fisiológica , Animales , Western Blotting , Línea Celular , Células Cultivadas , Dexametasona/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Insulina/análisis , Secreción de Insulina , Islotes Pancreáticos/química , Lactancia/fisiología , Oligonucleótidos Antisentido/genética , Fosforilación , Embarazo , Prolactina/genética , ARN Mensajero/análisis , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/análisis , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transducción de Señal/efectos de los fármacos , Transfección/métodosRESUMEN
The adaptation of pancreatic islets to pregnancy includes increased beta cell proliferation, expansion of islet mass, and increased insulin synthesis and secretion. Most of these adaptations are induced by prolactin (PRL). We have previously described that in vitro PRL treatment increases ERK3 expression in isolated rat pancreatic islets. This study shows that ERK3 is also upregulated during pregnancy. Islets from pregnant rats treated with antisense oligonucleotide targeted to the PRL receptor displayed a significant reduction in ERK3 expression. Immunohistochemical double-staining showed that ERK3 expression is restricted to pancreatic beta cells. Transfection with antisense oligonucleotide targeted to ERK3 abolished the insulin secretion stimulated by glucose in rat islets and by PMA in RINm5F cells. Therefore, we examined the participation of ERK3 in the activation of a cellular target involved in secretory events, the microtubule associated protein MAP2. PMA induced ERK3 phosphorylation that was companied by an increase in ERK3/MAP2 association and MAP2 phosphorylation. These observations provide evidence that ERK3 is involved in the regulation of stimulus-secretion coupling in pancreatic beta cells.
Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Quinasa 6 Activada por Mitógenos/biosíntesis , Receptores de Prolactina/metabolismo , Animales , Células Cultivadas , Femenino , Glucosa/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Modelos Animales , Oligonucleótidos Antisentido , Fosforilación , Embarazo , Ratas , Ratas Wistar , Acetato de Tetradecanoilforbol/farmacología , Regulación hacia ArribaRESUMEN
Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(-) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.
Asunto(s)
Citosina/análogos & derivados , Resistencia a Antineoplásicos/genética , Nucleósido-Fosfato Quinasa/metabolismo , Organofosfonatos/farmacología , Infecciones por Papillomavirus/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/virología , Transportadoras de Casetes de Unión a ATP/biosíntesis , Línea Celular Tumoral , Cidofovir , Citidina Trifosfato/biosíntesis , Citosina/farmacología , Femenino , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Nucleósido-Fosfato Quinasa/biosíntesis , Papillomaviridae , Fosforilación , Proteínas Transportadoras de Solutos/biosíntesis , Uridina Trifosfato/biosíntesis , Neoplasias del Cuello Uterino/patologíaAsunto(s)
Apoptosis/efectos de los fármacos , Hidrazinas/farmacología , Carioferinas/antagonistas & inhibidores , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Triazoles/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Carioferinas/metabolismo , Leucemia-Linfoma de Células T del Adulto/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1RESUMEN
The ability of PLA2 and crotapotin, isolated from Crotalus durissus collilineatus rattlesnake venom, to stimulate insulin secretion from isolated rat islets was examined. PLA2 and crotapotin stimulated insulin secretion at 2.8 mmol/L glucose, whereas at a high glucose concentrations (16.7 mmol/L) only PLA2 stimulated secretion. Nifedipine (10 micromol/L) did not alter the ability of PLA2 to increase insulin secretion stimulated by a depolarizing concentration of K+ (30 mmol/L). PLA2 did not affect 14CO2 production but significantly increased the efflux of arachidonic acid from isolated islets. These results indicate that PLA2-stimulated secretion is not dependent on an additional influx of Ca2+ through L-type Ca(2+)-channels but rather is associated with arachidonic acid formation in pancreatic islets.
Asunto(s)
Venenos de Crotálidos/química , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Fosfolipasas A/farmacología , Animales , Ácido Araquidónico/metabolismo , Venenos de Crotálidos/farmacología , Crotoxina/farmacología , Técnicas In Vitro , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Fosfolipasas A/química , Fosfolipasas A/aislamiento & purificación , Fosfolipasas A2 , Ratas , Ratas WistarRESUMEN
Infection with HIV ultimately leads to advanced immunodeficiency resulting in an increased incidence of cancer. For example primary effusion lymphoma (PEL) is an aggressive non-Hodgkin lymphoma with very poor prognosis that typically affects HIV infected individuals in advanced stages of immunodeficiency. Here we report on the dual anti-HIV and anti-PEL effect of targeting a single process common in both diseases. Inhibition of the exportin-1 (XPO1) mediated nuclear transport by clinical stage orally bioavailable small molecule inhibitors (SINE) prevented the nuclear export of the late intron-containing HIV RNA species and consequently potently suppressed viral replication. In contrast, in CRISPR-Cas9 genome edited cells expressing mutant C528S XPO1, viral replication was unaffected upon treatment, clearly demonstrating the anti-XPO1 mechanism of action. At the same time, SINE caused the nuclear accumulation of p53 tumor suppressor protein as well as inhibition of NF-κB activity in PEL cells resulting in cell cycle arrest and effective apoptosis induction. In vivo, oral administration arrested PEL tumor growth in engrafted mice. Our findings provide strong rationale for inhibiting XPO1 as an innovative strategy for the combined anti-retroviral and anti-neoplastic treatment of HIV and PEL and offer perspectives for the treatment of other AIDS-associated cancers and potentially other virus-related malignancies.
Asunto(s)
VIH/efectos de los fármacos , Carioferinas/antagonistas & inhibidores , Linfoma Relacionado con SIDA/tratamiento farmacológico , Terapia Molecular Dirigida , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Acrilatos/química , Acrilatos/farmacología , Acrilatos/uso terapéutico , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Femenino , VIH/aislamiento & purificación , Humanos , Carioferinas/metabolismo , Ratones Desnudos , Datos de Secuencia Molecular , FN-kappa B/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Reproducibilidad de los Resultados , Triazoles/química , Triazoles/farmacología , Triazoles/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Replicación Viral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo , Proteína Exportina 1RESUMEN
In the course of Type 1 diabetes pro-inflammatory cytokines (e.g., IL-1ß, IFN-γ and TNF-α) produced by islet-infiltrating immune cells modify expression of key gene networks in ß-cells, leading to local inflammation and ß-cell apoptosis. Most known cytokine-induced transcription factors have pro-apoptotic effects, and little is known regarding "protective" transcription factors. To this end, we presently evaluated the role of the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) on ß-cell apoptosis and production of inflammatory mediators in the rat insulinoma INS-1E cells, in purified primary rat ß-cells and in human islets. C/EBPδ is expressed and up-regulated in response to the cytokines IL-1ß and IFN-γ in rat ß-cells and human islets. Small interfering RNA-mediated C/EBPδ silencing exacerbated IL-1ß+IFN-γ-induced caspase 9 and 3 cleavage and apoptosis in these cells. C/EBPδ deficiency increased the up-regulation of the transcription factor CHOP in response to cytokines, enhancing expression of the pro-apoptotic Bcl-2 family member BIM. Interfering with C/EBPδ and CHOP or C/EBPδ and BIM in double knockdown approaches abrogated the exacerbating effects of C/EBPδ deficiency on cytokine-induced ß-cell apoptosis, while C/EBPδ overexpression inhibited BIM expression and partially protected ß-cells against IL-1ß+IFN-γ-induced apoptosis. Furthermore, C/EBPδ silencing boosted cytokine-induced production of the chemokines CXCL1, 9, 10 and CCL20 in ß-cells by hampering IRF-1 up-regulation and increasing STAT1 activation in response to cytokines. These observations identify a novel function of C/EBPδ as a modulatory transcription factor that inhibits the pro-apoptotic and pro-inflammatory gene networks activated by cytokines in pancreatic ß-cells.
Asunto(s)
Apoptosis , Proteína delta de Unión al Potenciador CCAAT/fisiología , Células Secretoras de Insulina/patología , Animales , Línea Celular , Citocinas/biosíntesis , Humanos , Inflamación , Células Secretoras de Insulina/efectos de los fármacos , Insulinoma , Factor 1 Regulador del Interferón , Ratas , Factor de Transcripción STAT1RESUMEN
The transition from gestation to lactation is characterized by a robust adaptation of maternal pancreatic ß-cells. Consistent with the loss of ß-cell mass, glucose-induced insulin secretion is down-regulated in the islets of early lactating dams. Extensive experimental evidence has demonstrated that the surge of prolactin is responsible for the morphofunctional remodeling of the maternal endocrine pancreas during pregnancy, but the precise molecular mechanisms by which this phenotype is rapidly reversed after delivery are not completely understood. This study investigated whether glucocorticoid-regulated expression of Rasd1/Dexras, a small inhibitory G protein, is involved in this physiological plasticity. Immunofluorescent staining demonstrated that Rasd1 is localized within pancreatic ß-cells. Rasd1 expression in insulin-secreting cells was increased by dexamethasone and decreased by prolactin. In vivo data confirmed that Rasd1 expression is decreased in islets from pregnant rats and increased in islets from lactating mothers. Knockdown of Rasd1 abolished the inhibitory effects of dexamethasone on insulin secretion and the protein kinase A, protein kinase C, and ERK1/2 pathways. Chromatin immunoprecipitation experiments revealed that glucocorticoid receptor (GR) and signal transducer and activator of transcription 5b (STAT5b) cooperatively mediate glucocorticoid-induced Rasd1 expression in islets. Prolactin inhibited the stimulatory effect of GR/STAT5b complex on Rasd1 transcription. Overall, our data indicate that the stimulation of Rasd1 expression by glucocorticoid at the end of pregnancy reverses the increased insulin secretion that occurs during pregnancy. Prolactin negatively regulates this pathway by inhibiting GR/STAT5b transcriptional activity on the Rasd1 gene.
Asunto(s)
Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Periodo Periparto/metabolismo , Prolactina/farmacología , Proteínas ras/metabolismo , Animales , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Corticosterona/metabolismo , Dexametasona/farmacología , Femenino , Inmunoprecipitación , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Transcortina/genética , Transcortina/metabolismo , Proteínas ras/genéticaRESUMEN
PURPOSE: Retinal melatonin synthesis occurs in the photoreceptor layer in a circadian manner, controlling several physiologic rhythmic phenomena, besides being the most powerful natural free radical scavenger. The purpose of the present work was to evaluate the diurnal profile of retinal melatonin content and the regulation of its synthesis in the retina of streptozotocin-induced diabetic rats. METHODS: Diabetes was induced in male Wistar rats (12 hour-12 hour light/dark cycle) with streptozotocin. Control, diabetic, and insulin-treated diabetic animals were killed every 3 hours throughout the light-dark cycle. Retinal melatonin content was measured by high-performance liquid chromatography, arylalkylamine N-acetyltransferase (AANAT) activity was analyzed by radiometric assay, Bmal1 gene expression was determined by qPCR, and cyclic adenosine monophosphate (cAMP) content was assessed by ELISA. RESULTS: Control animals showed a clear retinal melatonin and AANAT activity daily rhythm, with high levels in the dark. Diabetic rats had both parameters reduced, and the impairment was prevented by immediate insulin treatment. In addition, the Bmal1 expression profile was lost in the diabetic group, and the retinal cAMP level was reduced 6 hours after lights on and 3 hours after lights off. CONCLUSIONS: The present work shows a melatonin synthesis reduction in diabetic rats retinas associated with a reduction in AANAT activity that was prevented by insulin treatment. The Bmal1-flattened gene expression and the cAMP reduction seem to be responsible for the AANAT activity decrease in diabetic animals. The melatonin synthesis reduction observed in the pineal gland of diabetic rats is also observed in a local melatonin tissue synthesizer, the retina.