Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Planta ; 256(3): 57, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960361

RESUMEN

MAIN CONCLUSION: Amplification and overexpression of the target site glutamine synthetase, specifically the plastid-located isoform, confers resistance to glufosinate in Amaranthus palmeri. This mechanism is novel among glufosinate-resistant weeds. Amaranthus palmeri has recently evolved resistance to glufosinate herbicide. Several A. palmeri populations from Missouri and Mississippi, U.S.A. had survivors when sprayed with glufosinate-ammonium (GFA, 657 g ha-1). One population, MO#2 (fourfold resistant) and its progeny (sixfold resistant), were used to study the resistance mechanism, focusing on the herbicide target glutamine synthetase (GS). We identified four GS genes in A. palmeri; three were transcribed: one coding for the plastidic protein (GS2) and two coding for cytoplasmic isoforms (GS1.1 and GS1.2). These isoforms did not contain mutations associated with resistance. The 17 glufosinate survivors studied showed up to 21-fold increase in GS2 copies. GS2 was expressed up to 190-fold among glufosinate survivors. GS1.1 was overexpressed > twofold in only 3 of 17, and GS1.2 in 2 of 17 survivors. GS inhibition by GFA causes ammonia accumulation in susceptible plants. Ammonia level was analyzed in 12 F1 plants. GS2 expression was negatively correlated with ammonia level (r = - 0.712); therefore, plants with higher GS2 expression are less sensitive to GFA. The operating efficiency of photosystem II (ϕPSII) of Nicotiana benthamiana overexpressing GS2 was four times less inhibited by GFA compared to control plants. Therefore, increased copy and overexpression of GS2 confer resistance to GFA in A. palmeri (or other plants). We present novel understanding of the role of GS2 in resistance evolution to glufosinate.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/genética , Amaranthus/metabolismo , Aminobutiratos , Amoníaco/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/farmacología
2.
Pest Manag Sci ; 78(6): 2258-2264, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35220663

RESUMEN

BACKGROUND: Resistance to protoporphyrinogen oxidase (PPO)-inhibiting herbicides is endowed primarily by target-site mutations at the PPX2 gene that compromise binding of the herbicide to the catalytic domain. In Amaranthus spp. PPX2, the most prevalent target mutations are deletion of the G210 codon, and the R128G and G339A substitutions. These mutations strongly affect the dynamic of the PPO2 binding pocket, resulting in reduced affinity with the ligand. Here we investigated the likelihood of co-occurrence of the most widespread target site mutations in the same PPX2 allele. RESULTS: Plants carrying R128G+/+ ΔG210+/-, where + indicates presence of the mutation, were crossed with each other. The PPX2 of the offspring was subjected to pyrosequencing and E. coli-based Sanger sequencing to determine mutation frequencies and allele co-occurrence. The data show that R128G ΔG210 can occur in one allele only; the second allele carries only one mutation. Double mutation in both alleles is less likely because of significant loss of enzyme activity. The segregation of offspring populations derived from a cross between heterozygous plants carrying ΔG210 G399A also showed no co-occurrence in the same allele. The offspring exhibited the expected mutation distribution patterns with few exceptions. CONCLUSIONS: Homozygous double-mutants are not physiologically viable. Double-mutant plants can only exist in a heterozygous state. Alternatively, if two mutations are detected in one plant, each mutation would occur in a separate allele. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Amaranthus , Herbicidas , Alelos , Amaranthus/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Protoporfirinógeno-Oxidasa/genética
3.
Pest Manag Sci ; 77(2): 1001-1012, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32990410

RESUMEN

BACKGROUND: Protoporphyrinogen IX oxidase 2 (PPO2) inhibitors are important for the management of glyphosate- and acetolactate synthase-resistant Palmer amaranth [Amaranthus palmeri (S.) Wats.]. The evolving resistance to PPO inhibitors is of great concern. We surveyed the evolution of resistance to fomesafen in the US Mid-south and determined its correlation with the known functional PPO2 target-site mutations (TSM). RESULTS: The 167 accessions analyzed were grouped into five categories, four resistant (147) and one susceptible (20). Arkansas accessions constituted 100% of the susceptible group while the Missouri accessions comprised 60% of the most resistant category. The majority of Mississippi accessions (88%) clustered in the high-survival-high-injury category, manifesting an early-stage resistance evolution. One hundred and fifteen accessions were genotyped for four known TSMs; 74% of accessions carried at least one TSM. The most common single TSM was ΔG210 (18% of accessions) and the predominant double mutation was ΔG210 + G399A (17%). Other mutations are likely less favorable, hence are rare. All TSMs were detected in three accessions. Further examination revealed that 9 and two individuals carried G399A + G210 and G399A + R128G TSM in the same allele, respectively. The existence of these combinations is supported by molecular modeling. CONCLUSIONS: Resistance to PPO inhibitors is widespread across the Mid-southern USA. Highly resistant field populations have plants with multiple mutations. G399A is the most prone to co-occur with other ppo2 mutations in the same allele. Mutation at R128 in the configuration of the PPO2 catalytic domain restrains the co-occurrence of R128G with ΔG210, making ΔG210 + G399A the most plausible, tolerable functional mutation combination to co-occur in the same ppo2 allele.


Asunto(s)
Amaranthus , Herbicidas , Alelos , Amaranthus/genética , Arkansas , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Humanos , Mississippi , Missouri , Mutación , Protoporfirinógeno-Oxidasa/genética
4.
Front Plant Sci ; 10: 568, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156659

RESUMEN

Protoporphyrinogen oxidase (PPO)-inhibiting herbicides are used to control weeds in a variety of crops. These herbicides inhibit heme and photosynthesis in plants. PPO-inhibiting herbicides are used to control Amaranthus palmeri (Palmer amaranth) especially those with resistance to glyphosate and acetolactate synthase (ALS) inhibiting herbicides. While investigating the basis of high fomesafen-resistance in A. palmeri, we identified a new amino acid substitution of glycine to alanine in the catalytic domain of PPO2 at position 399 (G399A) (numbered according to the protein sequence of A. palmeri). G399 is highly conserved in the PPO protein family across eukaryotic species. Through combined molecular, computational, and biochemical approaches, we established that PPO2 with G399A mutation has reduced affinity for several PPO-inhibiting herbicides, possibly due to steric hindrance induced by the mutation. This is the first report of a PPO2 amino acid substitution at G399 position in a field-selected weed population of A. palmeri. The mutant A. palmeri PPO2 showed high-level in vitro resistance to different PPO inhibitors relative to the wild type. The G399A mutation is very likely to confer resistance to other weed species under selection imposed by the extensive agricultural use of PPO-inhibiting herbicides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA