Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Syst ; 40(4): 104, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26888655

RESUMEN

Medical procedures often involve the use of the tactile sense to manipulate organs or tissues by using special tools. Doctors require extensive preparation in order to perform them successfully; for example, research shows that a minimum of 750 operations are needed to acquire sufficient experience to perform medical procedures correctly. Haptic devices have become an important training alternative and they have been considered to improve medical training because they let users interact with virtual environments by adding the sense of touch to the simulation. Previous articles in the field state that haptic devices enhance the learning of surgeons compared to current training environments used in medical schools (corpses, animals, or synthetic skin and organs). Consequently, virtual environments use haptic devices to improve realism. The goal of this paper is to provide a state of the art review of recent medical simulators that use haptic devices. In particular we focus on stitching, palpation, dental procedures, endoscopy, laparoscopy, and orthopaedics. These simulators are reviewed and compared from the viewpoint of used technology, the number of degrees of freedom, degrees of force feedback, perceived realism, immersion, and feedback provided to the user. In the conclusion, several observations per area and suggestions for future work are provided.


Asunto(s)
Entrenamiento Simulado/métodos , Operatoria Dental/educación , Endoscopía/educación , Retroalimentación Formativa , Humanos , Procedimientos Ortopédicos/educación , Palpación/métodos , Técnicas de Sutura/educación , Interfaz Usuario-Computador
2.
Front Robot AI ; 11: 1305615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577485

RESUMEN

Introduction: The teaching process plays a crucial role in the training of professionals. Traditional classroom-based teaching methods, while foundational, often struggle to effectively motivate students. The integration of interactive learning experiences, such as visuo-haptic simulators, presents an opportunity to enhance both student engagement and comprehension. Methods: In this study, three simulators were developed to explore the impact of visuo-haptic simulations on engineering students' engagement and their perceptions of learning basic physics concepts. The study used an adapted end-user computing satisfaction questionnaire to assess students' experiences and perceptions of the simulators' usability and its utility in learning. Results: Feedback from participants suggests a positive reception towards the use of visuo-haptic simulators, highlighting their usefulness in improving the understanding of complex physics principles. Discussion: Results suggest that incorporating visuo-haptic simulations into educational contexts may offer significant benefits, particularly in STEM courses, where traditional methods may be limited. The positive responses from participants underscore the potential of computer simulations to innovate pedagogical strategies. Future research will focus on assessing the effectiveness of these simulators in enhancing students' learning and understanding of these concepts in higher-education physics courses.

3.
Front Robot AI ; 11: 1276027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071114

RESUMEN

Introduction: This study aimed to develop, implement, and test a visuo-haptic simulator designed to explore the buoyancy phenomenon for freshman engineering students enrolled in physics courses. The primary goal was to enhance students' understanding of physical concepts through an immersive learning tool. Methods: The visuo-haptic simulator was created using the VIS-HAPT methodology, which provides high-quality visualization and reduces development time. A total of 182 undergraduate students were randomly assigned to either an experimental group that used the simulator or a control group that received an equivalent learning experience in terms of duration and content. Data were collected through pre- and post-tests and an exit-perception questionnaire. Results: Data analysis revealed that the experimental group achieved higher learning gains than the control group (p = 0.079). Additionally, students in the experimental group expressed strong enthusiasm for the simulator, noting its positive impact on their understanding of physical concepts. The VIS-HAPT methodology also reduced the average development time compared to similar visuo-haptic simulators. Discussion: The results demonstrate the efficacy of the buoyancy visuo-haptic simulator in improving students' learning experiences and validate the utility of the VIS-HAPT method for creating immersive educational tools in physics.

4.
Diabetol Metab Syndr ; 13(1): 148, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930452

RESUMEN

Diabetes Mellitus is a severe, chronic disease that occurs when blood glucose levels rise above certain limits. Over the last years, machine and deep learning techniques have been used to predict diabetes and its complications. However, researchers and developers still face two main challenges when building type 2 diabetes predictive models. First, there is considerable heterogeneity in previous studies regarding techniques used, making it challenging to identify the optimal one. Second, there is a lack of transparency about the features used in the models, which reduces their interpretability. This systematic review aimed at providing answers to the above challenges. The review followed the PRISMA methodology primarily, enriched with the one proposed by Keele and Durham Universities. Ninety studies were included, and the type of model, complementary techniques, dataset, and performance parameters reported were extracted. Eighteen different types of models were compared, with tree-based algorithms showing top performances. Deep Neural Networks proved suboptimal, despite their ability to deal with big and dirty data. Balancing data and feature selection techniques proved helpful to increase the model's efficiency. Models trained on tidy datasets achieved almost perfect models.

5.
PLoS One ; 14(10): e0223183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31600242

RESUMEN

Studies conducted in time series could be far more informative than those that only capture a specific moment in time. However, when it comes to transcriptomic data, time points are sparse creating the need for a constant search for methods capable of extracting information out of experiments of this kind. We propose a feature selection algorithm embedded in a hidden Markov model applied to gene expression time course data on either single or even multiple biological conditions. For the latter, in a simple case-control study features or genes are selected under the assumption of no change over time for the control samples, while the case group must have at least one change. The proposed model reduces the feature space according to a two-state hidden Markov model. The two states define change/no-change in gene expression. Features are ranked in consonance with three scores: number of changes across time, magnitude of such changes and quality of replicates as a measure of how much they deviate from the mean. An important highlight is that this strategy overcomes the few samples limitation, common in transcriptome experiments through a process of data transformation and rearrangement. To prove this method, our strategy was applied to three publicly available data sets. Results show that feature domain is reduced by up to 90% leaving only few but relevant features yet with findings consistent to those previously reported. Moreover, our strategy proved to be robust, stable and working on studies where sample size is an issue otherwise. Hence, even with two biological replicates and/or three time points our method proves to work well.


Asunto(s)
Expresión Génica/genética , Cadenas de Markov , Modelos Estadísticos , Algoritmos , Estudios de Casos y Controles
6.
J Med Eng Technol ; 40(7-8): 392-399, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27538360

RESUMEN

The challenge of providing quality healthcare to underserved populations in low- and middle-income countries (LMICs) has attracted increasing attention from information and communication technology (ICT) professionals interested in providing societal impact through their work. Sana is an organisation hosted at the Institute for Medical Engineering and Science at the Massachusetts Institute of Technology that was established out of this interest. Over the past several years, Sana has developed a model of organising mobile health bootcamp and hackathon events in LMICs with the goal of encouraging increased collaboration between ICT and medical professionals and leveraging the growing prevalence of cellphones to provide health solutions in resource limited settings. Most recently, these events have been based in Colombia, Uganda, Greece and Mexico. The lessons learned from these events can provide a framework for others working to create sustainable health solutions in the developing world.


Asunto(s)
Salud Global , Comunicación Interdisciplinaria , Solución de Problemas , Telemedicina , Teléfono Celular , Colombia , Servicios de Salud Comunitaria , Grecia , Humanos , México , Aplicaciones Móviles , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA