Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 124(2): 433-444, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37535142

RESUMEN

PURPOSE: Concentration- and time-dependent effect of lactate on physiological adaptation (i.e., glycolytic adaptation and mitochondrial biogenesis) have been reported. Subtetanic neuromuscular electrical stimulation (NMES) with voluntary exercise (VOLES) can increase blood lactate accumulation. However, whether this is also true that VOLES can enhance the blood lactate accumulation during sprint exercise is unknown. Thus, we investigated whether VOLES before the Wingate test can enhance blood lactate accumulation without compromising Wingate exercise performance. METHODS: Fifteen healthy young males (mean [SD], age: 23 [4] years, body mass index: 22.0 [2.1] kg/m2) volunteered. After resting measurement, participants performed a 3-min intervention: VOLES (NMES with free-weight cycling) or voluntary cycling alone, which matched exercise intensity with VOLES (VOL, 43.6 [8.0] watt). Then, they performed the Wingate test with 30 min free-weight cycling recovery. The blood lactate concentration ([La]b) was assessed at the end of resting and intervention, and recovery at 1, 3, 5, 10, 20, and 30 min. RESULTS: [La]b during intervention was higher with VOLES than VOL (P = 0.011). The increase in [La]b after the Wingate test was maintained for longer with VOLES than VOL at 10- and 20-min recovery (P = 0.014 and 0.023, respectively). Based on the Wingate test, peak power, mean power, and the rate of decline were not significantly different between VOLES and VOL (P = 0.184, 0.201, and 0.483, respectively). CONCLUSION: The combination of subtetanic NMES with voluntary exercise before the Wingate test has the potential to enhance blood lactate accumulation. Importantly, this combined approach does not compromise Wingate exercise performance compared to voluntary exercise alone.


Asunto(s)
Ejercicio Físico , Ciclo del Peso , Masculino , Humanos , Animales , Adulto Joven , Adulto , Ejercicio Físico/fisiología , Ácido Láctico , Estimulación Eléctrica , Arvicolinae
2.
Int J Sports Med ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38286427

RESUMEN

The aim of this study was to determine the effects of subtetanic neuromuscular electrical stimulation combined with voluntary exercise between repeated Wingate tests on sprint exercise performance and blood lactate accumulation during sprint interval training. Fifteen healthy young males volunteered. After 1-min baseline, participants underwent the Wingate test twice. They performed a 4-min intervention between tests: neuromuscular electrical stimulation with free-weight cycling or voluntary cycling alone [43.6 (8.0) watts], which matched oxygen consumption with neuromuscular electrical stimulation with free-weight cycling. The blood lactate concentration was assessed at the end of the baseline, at 3-min intervention, and on recovery at 1, 3, 5, and 10 min after the second Wingate test. Peak and mean blood lactate concentration during recovery were significantly greater with neuromuscular electrical stimulation with free-weight cycling than voluntary cycling alone (P>0.036 and P=0.011, respectively). Peak power, mean power, and rate of decline (fatigue index) were not significantly different between conditions in both Wingate tests (condition/interaction all P>0.300, partial η2<0.1). Subtetanic neuromuscular electrical stimulation combined with voluntary exercise indicated similar exercise performance and fatigue levels during Wingate tests, but enhanced blood lactate accumulation compared to oxygen consumption-matched voluntary cycling during sprint interval training.

3.
Eur J Appl Physiol ; 123(1): 159-168, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36214903

RESUMEN

INTRODUCTION: Neuromuscular electrical stimulation (NMES) induces involuntary muscle contraction, preferentially promotes anaerobic metabolism, and is applicable for increasing exercise intensity. This study aimed to assess whether superimposing NMES onto moderate-intensity voluntary exercise imitates physiological adaptations that occur in response to vigorous voluntary exercise. METHODS: Eight participants trained with a cycling ergometer at 100% of the ventilatory threshold (VT) (73.3% of peak oxygen consumption) (VOL), and another nine participants trained with the cycling ergometer at 75% of VT (56.2% of peak oxygen consumption) with subtetanic NMES applied to the gluteus and thigh muscles (VOLES), matched to VOL training sessions, for nine weeks. RESULTS: Rating of perceived exertion (RPE) in VOLES (12.00 ± 1.50) was significantly lower than in VOL (14.88 ± 1.81) (p < 0.05) during training sessions. Peak power output during the exercise tolerance test was increased in VOL and VOLES following interventions. Oxygen consumption and heart rate (HR) at VT and blood lactate concentration (BLC) at < VT were decreased from before (PRE) to after (POST) training interventions for both VOL and VOLES. There were no significant differences in absolute changes from PRE to POST for peak power output and oxygen consumption, HR, and BLC at a submaximal intensity between VOL and VOLES. CONCLUSION: Our results suggest that both superimposing subtetanic NMES onto moderate-intensity voluntary exercise and vigorous voluntary intensity exercise induce the improvement in cardiovascular and metabolic systems, but the adaptation of former method is provided without perceived strenuous exertion.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Humanos , Ejercicio Físico/fisiología , Consumo de Oxígeno/fisiología , Músculo Esquelético/fisiología , Estimulación Eléctrica/métodos , Ácido Láctico , Adaptación Fisiológica
4.
J Sports Med Phys Fitness ; 64(1): 78-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37902806

RESUMEN

BACKGROUND: Although subtetanic neuromuscular electrical stimulation (NMES) has been proposed as an exercise training and/or rehabilitation tool, the impact of NMES on the autonomic nervous system (ANS) is unclear. Thus, we hypothesized that NMES would alter ANS, i.e., increase sympathetic activity and decrease parasympathetic activity, in young individuals. METHODS: Eighteen healthy young individuals (16 males, mean age: 22 [SD: 4] years, Body Mass Index: 21.7 [2.2] kg/m2) volunteered. Blood pressure (BP), heart rate (HR), and R-R intervals were recorded during 6-minute resting, NMES, and recovery conditions. Short-term heart rate variability analysis of R-R intervals was performed for the frequency and time domains during each condition. Time domain indices included the root mean square of successive R-R interval differences (RMSSD), and the percentage of successive R-R intervals differing by more than 50ms (pRR50%). Frequency domain indices (fast Fourier transform) of R-R intervals included total power (TP), low-frequency (LF) power (0.04-0.15 Hz), and high-frequency (HF) power (0.15-0.4 Hz). RESULTS: BP was not altered but HR was significantly increased during NMES (P<0.001), and it returned to the resting level at recovery. RMSSD and pRR50 decreased from resting to NMES and returned at recovery conditions (P<0.05, respectively). TP and HF decreased from resting to NMES and returned at recovery conditions (P<0.05, respectively). LF increased from NMES to recovery (P<0.05). The LF/HF ratio showed no significant differences between conditions (P=0.210). CONCLUSIONS: Cardiac ANS fluctuated by subtetanic NMES without BP elevation in healthy young individuals. Parasympathetic but not sympathetic activity was affected by NMES stimulation.


Asunto(s)
Sistema Nervioso Autónomo , Corazón , Masculino , Humanos , Adulto Joven , Adulto , Ejercicio Físico , Presión Sanguínea , Frecuencia Cardíaca/fisiología , Estimulación Eléctrica
5.
Int J Sports Physiol Perform ; 17(12): 1725-1731, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370705

RESUMEN

PURPOSE: Contributions of neural and muscular factors to muscle strength change with growth, but such changes remain unclear in young populations. This study aimed to clarify the association between muscle strength and neural and muscular factors in youth athletes. METHODS: Maximal voluntary contraction (MVC) during isometric knee extension, the motor unit firing rate (MUFR), and muscle thickness (MT) of the vastus lateralis were measured in 70 youth male soccer players (mean [SD]; chronological age = 16.3 [0.6] y, peak height velocity age = 13.1 [1.0] y). MUFR and MT were measured with high-density surface electromyography and ultrasonography, respectively. RESULTS: For MUFR and MT, correlations with MVC were calculated and the values of different MVC groups were compared. A significant correlation between MVC and MT (r = .49, P < .01) was noted, but not MUFR (r = .03, P > .05). There was also no significant correlation between MT and MUFR (r = -.33, P > .05). In addition, comparison among groups (higher-/middle-/lower-strength groups) revealed that MT in the lower-strength group was significantly lower than in middle-and higher-strength groups (P < .01). CONCLUSION: In youth athletes, muscle strength is associated with muscular factors, rather than neural factors, and muscular and neural factors may independently contribute to muscle strength.


Asunto(s)
Contracción Isométrica , Músculo Cuádriceps , Masculino , Adolescente , Humanos , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/fisiología , Contracción Isométrica/fisiología , Fuerza Muscular/fisiología , Electromiografía , Atletas , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA