Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 146(12): 4916-4934, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37849234

RESUMEN

Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Humanos , Ratas , Animales , Hipocampo , Cognición , Microbioma Gastrointestinal/fisiología , Neurogénesis/fisiología
2.
Clin Anat ; 36(1): 137-150, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36069043

RESUMEN

There is an increasing need to facilitate enhanced student engagement in anatomy education. Higher education students differ in academic preferences and abilities and so, not all teaching strategies suit all students. Therefore, it is suggested that curricula design and delivery adapt to sustain learner engagement. Enhanced learner engagement is a fundamental feature of Universal Design for Learning (UDL). The aim of this study is to determine if anatomy educators in the Republic of Ireland (ROI) and United Kingdom (UK) are aware of UDL and to assess if, and to what extent, it has been implemented in the design and delivery of anatomy curricula for healthcare students. An anonymous online questionnaire was administered to anatomy educators in higher level institutions in the ROI and UK. Inductive content analysis was used to identify the impact of UDL on student learning, engagement, and motivation, as perceived by the participants. The response rate was 23% (n = 61). Nineteen participants stated they knew of UDL. Of these, 15 had utilized UDL in their teaching of anatomy. Analysis indicated that the perception of UDL was mixed. However, the majority of responses relating to UDL were positive. The majority of the respondents were unaware of UDL but identified the frameworks' checkpoints within their curriculum, suggesting they have unknowingly incorporated elements of UDL in their curriculum design and delivery. There is a lack of information on the benefits of explicit utilization of UDL for engagement and motivation to learn anatomy in healthcare programs in the ROI and UK.


Asunto(s)
Anatomía , Diseño Universal , Humanos , Aprendizaje , Curriculum , Universidades , Irlanda , Reino Unido , Anatomía/educación
3.
Neurobiol Dis ; 170: 105746, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35526743

RESUMEN

Temporal lobe epilepsy (TLE) is a neurological disorder affecting millions of people worldwide and currently represents the most common form of focal epilepsy. Thus, the search for aetiological and pathophysiological parameters of TLE is ongoing. Preclinical work and post-mortem human studies suggest adult hippocampal neurogenesis as a potentially relevant factor in TLE pathogenesis. Although progress has been made in elucidating the molecular links between TLE and hippocampal neurogenesis, recent evidence suggests that additional peripheral mediators may be involved. The microbiota-gut-brain axis mediates bidirectional communication between the gut and the brain and could comprise a link between neurogenesis and TLE. In this review, we discuss emerging evidence highlighting a potential role for the gut microbiome in connecting TLE pathogenesis and hippocampal neurogenesis. We focus in particular on mechanisms associated with neuronal excitability, neuroinflammation and gut microbial metabolites. As the evidence does not yet support a direct link between gut microbiota-regulated hippocampal neurogenesis and TLE aetiology or pathophysiology, future studies are needed to establish whether current findings comprise circumstantial links or a potentially novel avenue for clinically relevant research.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Microbioma Gastrointestinal , Adulto , Microbioma Gastrointestinal/fisiología , Hipocampo/patología , Humanos , Neurogénesis
4.
Brain Behav Immun ; 99: 327-338, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34732365

RESUMEN

Stress during critical periods of neurodevelopment is associated with an increased risk of developing stress-related psychiatric disorders, which are more common in women than men. Hippocampal neurogenesis (the birth of new neurons) is vulnerable to maternal separation (MS) and inflammatory stressors, and emerging evidence suggests that hippocampal neurogenesis is more sensitive to stress in the ventral hippocampus (vHi) than in the dorsal hippocampus (dHi). Although research into the effects of MS stress on hippocampal neurogenesis is well documented in male rodents, the effect in females remains underexplored. Similarly, reports on the impact of inflammatory stressors on hippocampal neurogenesis in females are limited, especially when female bias in the prevalence of stress-related psychiatric disorders begins to emerge. Thus, in this study we investigated the effects of MS followed by an inflammatory stressor (lipopolysaccharide, LPS) in early adolescence on peripheral and hippocampal inflammatory responses and hippocampal neurogenesis in juvenile female rats. We show that MS enhanced an LPS-induced increase in the pro-inflammatory cytokine IL-1ß in the vHi but not in the dHi. However, microglial activation was similar following LPS alone or MS alone in both hippocampal regions, while MS prior to LPS reduced microglial activation in both dHi and vHi. The production of new neurons was unaffected by MS and LPS. MS and LPS independently reduced the dendritic complexity of new neurons, and MS exacerbated LPS-induced reductions in the complexity of distal dendrites of new neurons in the vHi but not dHi. These data highlight that MS differentially primes the physiological response to LPS in the juvenile female rat hippocampus.


Asunto(s)
Privación Materna , Enfermedades Neuroinflamatorias , Animales , Femenino , Hipocampo , Lipopolisacáridos/farmacología , Masculino , Microglía , Neurogénesis/fisiología , Neuronas , Ratas
5.
Mol Psychiatry ; 26(7): 3240-3252, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32709996

RESUMEN

Hippocampal neurogenesis has been shown to play roles in learning, memory, and stress responses. These diverse roles may be related to a functional segregation of the hippocampus along its longitudinal axis. Indeed, the dorsal hippocampus (dHi) plays a predominant role in spatial learning and memory, while the ventral hippocampus (vHi) is predominantly involved in the regulation of anxiety, a behaviour impacted by stress. Recent studies suggest that the area between them, the intermediate hippocampus (iHi) may also be functionally independent. In parallel, it has been reported that chronic stress reduces neurogenesis preferentially in the vHi rather the dHi. We thus aimed to determine whether such stress-induced changes in neurogenesis could be related to differential intrinsic sensitivity of neural progenitor cells (NPCs) from the dHi, iHi, or vHi to the stress hormone, corticosterone, or the glucocorticoid receptor (GR) agonist, dexamethasone. Long-term exposure of rat NPCs to corticosterone or dexamethasone decreased neuronal differentiation in the vHi but not the dHi, while iHi cultures showed an intermediate response. A similar gradient-like response on neuronal differentiation and maturation was observed with dexamethasone treatment. This gradient-like effect was also observed on GR nuclear translocation in response to corticosterone or dexamethasone. Long-term exposure to corticosterone or dexamethasone treatment also tended to induce a greater downregulation of GR-associated genes in vHi-derived neurons compared to those from the dHi and iHi. These data suggest that increased intrinsic sensitivity of vHi NPC-derived neurons to chronic glucocorticoid exposure may underlie the increased vulnerability of the vHi to chronic stress-induced reductions in neurogenesis.


Asunto(s)
Glucocorticoides , Hipocampo , Animales , Corticosterona , Glucocorticoides/farmacología , Hipocampo/metabolismo , Neurogénesis , Neuronas/metabolismo , Ratas , Receptores de Glucocorticoides/metabolismo
6.
Nutr Neurosci ; 25(4): 657-669, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32723167

RESUMEN

Introduction: Adolescence is an important stage of maturation for various brain structures. It is during this time therefore that the brain may be more vulnerable to environmental factors such as diet that may influence mood and memory. Diets high in fat and sugar (termed a cafeteria diet) during adolescence have been shown to negatively impact upon cognitive performance, which may be reversed by switching to a standard diet during adulthood. Consumption of a cafeteria diet increases both peripheral and central levels of interleukin-1ß (IL-1ß), a pro-inflammatory cytokine which is also implicated in cognitive impairment during the ageing process. It is unknown whether adolescent exposure to a cafeteria diet potentiates the negative effects of IL-1ß on cognitive function during adulthood.Methods: Male Sprague-Dawley rats consumed a cafeteria diet during adolescence after which time they received a lentivirus injection in the hippocampus to induce chronic low-grade overexpression of IL-1ß. After viral integration, metabolic parameters, circulating and central pro-inflammatory cytokine levels, and cognitive behaviours were assessed.Results: Our data demonstrate that rats fed the cafeteria diet exhibit metabolic dysregulations in adulthood, which were concomitant with low-grade peripheral and central inflammation. Overexpression of hippocampal IL-1ß in adulthood impaired spatial working memory. However, adolescent exposure to a cafeteria diet, combined with or without hippocampal IL-1ß in adulthood did not induce any lasting cognitive deficits when the diet was replaced with a standard diet in adulthood. Discussion: These data demonstrate that cafeteria diet consumption during adolescence induces metabolic and inflammatory changes, but not behavioural changes in adulthood.


Asunto(s)
Dieta , Memoria Espacial , Animales , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
7.
Clin Anat ; 35(1): 26-39, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34482575

RESUMEN

Appropriate anatomy education for speech and language therapists is a crucial part of preparation for clinical practice. While much research has been conducted regarding the anatomical education of medical students, there is a paucity of evidence for speech and language therapy students. This study assessed the methods employed by a cohort of first-year speech and language therapy students to learn anatomy, their perceptions of the clinical importance of anatomy and motivation to learn anatomy (using a modified version of the motivation strategies for learning questionnaire) and how this related to potential barriers to motivation such as mental well-being (using the Warwick-Edinburgh Mental Well-Being Scale [WEMWBS]). Analysis revealed that 92% of students agreed or strongly agreed that a sound knowledge of anatomy is important for clinical practice, 74% agreed or strongly agreed that listening at lectures was how they primarily learned anatomy, and 91% of students agreed or strongly agreed that they worried a great deal about tests. The latter statement was negatively correlated with a number of statements on the WEMWBS. Overall, the data revealed that first-year speech and language therapy students place importance on anatomy and its role in their future clinical practice, that they have different preferences for learning anatomy compared to medical students, and also have significant anxiety surrounding anatomy examinations. Multiple significant correlations between responses to the motivation and mental well-being questionnaires suggest that there is a significant relationship between first-year student motivation to learn anatomy and well-being.


Asunto(s)
Anatomía , Educación de Pregrado en Medicina , Estudiantes de Medicina , Anatomía/educación , Curriculum , Humanos , Aprendizaje , Motivación , Encuestas y Cuestionarios
8.
Annu Rev Psychol ; 71: 49-78, 2020 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-31567042

RESUMEN

Depression remains one of the most prevalent psychiatric disorders, with many patients not responding adequately to available treatments. Chronic or early-life stress is one of the key risk factors for depression. In addition, a growing body of data implicates chronic inflammation as a major player in depression pathogenesis. More recently, the gut microbiota has emerged as an important regulator of brain and behavior and also has been linked to depression. However, how this holy trinity of risk factors interact to maintain physiological homeostasis in the brain and body is not fully understood. In this review, we integrate the available data from animal and human studies on these three factors in the etiology and progression of depression. We also focus on the processes by which this microbiota-immune-stress matrix may influence centrally mediated events and on possible therapeutic interventions to correct imbalances in this triune.


Asunto(s)
Trastorno Depresivo , Microbioma Gastrointestinal , Inflamación , Estrés Psicológico , Animales , Trastorno Depresivo/etiología , Trastorno Depresivo/inmunología , Trastorno Depresivo/microbiología , Trastorno Depresivo/terapia , Humanos , Inflamación/complicaciones , Estrés Psicológico/complicaciones
9.
Brain Behav Immun ; 83: 172-179, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604142

RESUMEN

Both neuroinflammation and adult hippocampal neurogenesis (AHN) are implicated in many neurodegenerative disorders as well as in neuropsychiatric disorders, which often become symptomatic during adolescence. A better knowledge of the impact that chronic neuroinflammation has on the hippocampus during the adolescent period could lead to the discovery of new therapeutics for some of these disorders. The hippocampus is particularly vulnerable to altered concentrations of the pro-inflammatory cytokine interleukin-1ß (IL-1ß), with elevated levels implicated in the aetiology of neurodegenerative disorders such as Alzheimer's and Parkinson's, and stress-related disorders such as depression. The effect of acutely and chronically elevated concentrations of hippocampal IL-1ß have been shown to reduce AHN in adult rodents. However, the effect of exposure to chronic overexpression of hippocampal IL-1ß during adolescence, a time of increased vulnerability, hasn't been fully interrogated. Thus, in this study we utilized a lentiviral approach to induce chronic overexpression of IL-1ß in the dorsal hippocampus of adolescent male Sprague Dawley rats for 5 weeks, during which time its impact on cognition and hippocampal neurogenesis were examined. A reduction in hippocampal neurogenesis was observed along with a reduced level of neurite branching on hippocampal neurons. However, there was no effect of IL-1ß overexpression on performance in pattern separation, novel object recognition or spontaneous alternation in the Y maze. Our study has highlighted that chronic IL-1ß overexpression in the hippocampus during the adolescent period exerts a negative impact on neurogenesis independent of cognitive performance, and suggests a degree of resilience of the adolescent hippocampus to inflammatory insult.


Asunto(s)
Envejecimiento/metabolismo , Cognición , Hipocampo/citología , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Neurogénesis , Animales , Masculino , Ratas , Ratas Sprague-Dawley
10.
Hippocampus ; 29(4): 352-365, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30844139

RESUMEN

Adolescence is a critical period for postnatal brain maturation and thus a time when environmental influences may affect cognitive processes in later life. Exercise during adulthood has been shown to increase hippocampal neurogenesis and enhance cognition. However, the impact of exercise initiated in adolescence on the brain and behavior in adulthood is not fully understood. The aim of this study was to compare the impact of voluntary exercise that is initiated during adolescence or early adulthood on cognitive performance in hippocampal-dependent and -independent processes using both object-based and touchscreen operant paradigms. Adult (8 week) and adolescent (4 week) male Sprague-Dawley rats had access to a running wheel (exercise) or were left undisturbed (sedentary control) for 4 weeks prior to behavioral testing and for the duration of the experiment. Results from touchscreen-based tasks showed that reversal learning was enhanced by both adult and adolescent-initiated exercise, while only exercise that began in adolescence induced a subtle but transient increase in performance on a location discrimination task. Spontaneous alternation in the Y-maze was impaired following adolescent onset exercise, while object memory was unaffected by either adult or adolescent-initiated exercise. Adolescent-initiated exercise increased the number of hippocampal DCX cells, an indicator of neurogenesis. It also promoted the complexity of neurites on DCX cells, a key process for synaptic integration, to a greater degree than adult-initiated exercise. Together the data here show that exercise during the adolescent period compared to adulthood differentially affects cognitive processes and the development of new hippocampal neurons in later life.


Asunto(s)
Cognición/fisiología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Neurogénesis/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Proteína Doblecortina , Masculino , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Sprague-Dawley
11.
FASEB J ; 32(2): 613-624, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970252

RESUMEN

Hippocampal neurogenesis is a lifelong process whereby new neurons are produced and integrate into the host circuitry within the hippocampus. It is regulated by a multitude of extrinsic and intrinsic regulators and is believed to contribute to certain hippocampal-dependent cognitive tasks. Hippocampal neurogenesis and associated cognition have been demonstrated to be impaired after increases in the levels of proinflammatory cytokine IL-1ß in the hippocampus, such as that which occurs in various neurodegenerative and psychiatric disorders. IL-1ß also suppresses the expression of TLX (orphan nuclear receptor tailless homolog), which is an orphan nuclear receptor that functions to promote neural progenitor cell (NPC) proliferation and suppress neuronal differentiation; therefore, manipulation of TLX represents a potential strategy with which to prevent the antiproliferative effects of IL-1ß. In this study, we assessed the mechanism that underlies IL-1ß-induced changes in TLX expression and determined the protective capacity of TLX to mitigate the effects of IL-1ß on embryonic rat hippocampal neurosphere expansion. We demonstrate that IL-1ß activated the NF-κB pathway in proliferating NPCs and that this activation was responsible for IL-1ß-induced changes in TLX expression. In addition, we report that enhancing TLX expression prevented the IL-1ß-induced suppression of neurosphere expansion. Thus, we highlight TLX as a potential protective regulator of the antiproliferative effects of IL-1ß on hippocampal neurogenesis.-Ó'Léime, C. S., Kozareva, D. A., Hoban, A. E., Long-Smith, C. M., Cryan, J. F., Nolan, Y. M. TLX is an intrinsic regulator of the negative effects of IL-1ß on proliferating hippocampal neural progenitor cells.


Asunto(s)
Proliferación Celular , Regulación de la Expresión Génica , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Células-Madre Neurales/metabolismo , Receptores Citoplasmáticos y Nucleares/biosíntesis , Animales , Células Cultivadas , Hipocampo/citología , FN-kappa B/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Ratas , Transducción de Señal , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
12.
Hippocampus ; 28(1): 3-11, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972669

RESUMEN

Adolescence is a sensitive period of neurodevelopment during which life experiences can have profound effects on the brain. Hippocampal neurogenesis, the neurodevelopmental process of generating functional new neurons from neural stem cells, occurs throughout the lifespan and has been shown to play a role in learning, memory and in mood regulation. In adulthood it is influenced by extrinsic environmental factors such as exercise and stress. Intrinsic factors that regulate hippocampal neurogenesis include the orphan nuclear receptor TLX (Nr2e1) which is primarily expressed in the neurogenic niches of the brain. While mechanisms regulating adult hippocampal neurogenesis have been widely studied, less is known on how hippocampal neurogenesis is affected during adolescence. The aim of this study was to investigate the influence of both TLX and isolation stress on exercise-induced increases in neurogenesis in running and sedentary conditions during adolescence. Single- (isolation stress) wild type and Nr2e1-/- mice or pair-housed wild type mice were housed in sedentary conditions or allowed free access to running wheels for 3 weeks during adolescence. A reduction of neuronal survival was evident in mice lacking TLX, and exercise did not increase hippocampal neurogenesis in these Nr2e1-/- mice. This suggests that TLX is necessary for the pro-neurogenic effects of exercise during adolescence. Interestingly, although social isolation during adolescence did not affect hippocampal neurogenesis, it prevented an exercise-induced increase in neurogenesis in the ventral hippocampus. Together these data demonstrate the importance of intrinsic and extrinsic factors in promoting an exercise-induced increase in neurogenesis at this key point in life.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Hipocampo/fisiopatología , Neurogénesis/fisiología , Receptores Citoplasmáticos y Nucleares/deficiencia , Carrera/fisiología , Aislamiento Social , Animales , Apoptosis/fisiología , Supervivencia Celular/fisiología , Hipocampo/patología , Masculino , Ratones Noqueados , Neuronas/patología , Neuronas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Conducta Sedentaria , Maduración Sexual , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología
13.
Brain Behav Immun ; 69: 456-469, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29339319

RESUMEN

The impact of treatment with the noradrenaline (NA) re-uptake inhibitor atomoxetine and the α2-adrenoceptor (AR) antagonist idazoxan in an animal model of Parkinson's disease (PD) was assessed. Concurrent systemic treatment with atomoxetine and idazoxan, a combination which serves to enhance the extra-synaptic availability of NA, exerts anti-inflammatory and neuroprotective effects following delivery of an inflammatory stimulus, the bacterial endotoxin, lipopolysaccharide (LPS) into the substantia nigra. Lesion-induced deficits in motor function (akinesia, forelimb-use asymmetry) and striatal dopamine (DA) loss were rescued to varying degrees depending on the treatment. Treatment with atomoxetine following LPS-induced lesion to the substantia nigra, yielded a robust anti-inflammatory effect, suppressing microglial activation and expression of the pro-inflammatory cytokine TNF-α whilst increasing the expression of neurotrophic factors. Furthermore atomoxetine treatment prevented loss of tyrosine hydroxylase (TH) positive nigral dopaminergic neurons and resulted in functional improvements in motor behaviours. Atomoxetine alone was sufficient to achieve most of the observed effects. In combination with idazoxan, an additional improvement in the impairment of contralateral limb use 7 days post lesion and a reduction in amphetamine-mediated rotational asymmetry 14 days post-lesion was observed, compared to atomoxetine or idazoxan treatments alone. The results indicate that increases in central NA tone has the propensity to regulate the neuroinflammatory phenotype in vivo and may act as an endogenous neuroprotective mechanism where inflammation contributes to the progression of DA loss. In accordance with this, the clinical use of agents such as NA re-uptake inhibitors and α2-AR antagonists may prove useful in enhancing the endogenous neuroimmunomodulatory potential of NA in conditions associated with brain inflammation.


Asunto(s)
Clorhidrato de Atomoxetina/farmacología , Encéfalo/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Idazoxan/farmacología , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Inhibidores de Captación Adrenérgica/farmacología , Inhibidores de Captación Adrenérgica/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Animales , Clorhidrato de Atomoxetina/uso terapéutico , Encéfalo/metabolismo , Encéfalo/patología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Idazoxan/uso terapéutico , Lipopolisacáridos , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson Secundaria/metabolismo , Enfermedad de Parkinson Secundaria/patología , Ratas , Ratas Wistar , Resultado del Tratamiento
14.
Brain Behav Immun ; 70: 268-279, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29518529

RESUMEN

TLX is an orphan nuclear receptor highly expressed within neural progenitor cells (NPCs) in the hippocampus where is regulates proliferation. Inflammation has been shown to have negative effects on hippocampal function as well as on NPC proliferation. Specifically, the pro-inflammatory cytokine IL-1ß suppresses NPC proliferation as well as TLX expression in the hippocampus. However, it is unknown whether TLX itself is involved in regulating the inflammatory response in the hippocampus. To explore the role of TLX in inflammation, we assessed changes in the transcriptional landscape of the hippocampus of TLX knockout mice (TLX-/-) compared to wildtype (WT) littermate controls with and without intrahippocampal injection of IL-1ß using a whole transcriptome RNA sequencing approach. We demonstrated that there is an increase in the transcription of genes involved in the promotion of inflammation and regulation of cell chemotaxis (Tnf, Il1b, Cxcr1, Cxcr2, Tlr4) and a decrease in the expression of genes relating to synaptic signalling (Lypd1, Syt4, Cplx2) in cannulated TLX-/- mice compared to WT controls. We demonstrate that mice lacking in TLX share a similar increase in 176 genes involved in regulating inflammation (e.g. Cxcl1, Tnf, Il1b) as WT mice injected with IL-1ß into the hippocampus. Moreover, TLX-/- mice injected with IL-1ß displayed a blunted transcriptional profile compared to WT mice injected with IL-1ß. Thus, TLX-/- mice, which already have an exaggerated inflammatory profile after cannulation surgery, are primed to respond differently to an inflammatory stimulus such as IL-1ß. Together, these results demonstrate that TLX regulates hippocampal inflammatory transcriptome response to brain injury (in this case cannulation surgery) and cytokine stimulation.


Asunto(s)
Receptores Nucleares Huérfanos/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Proliferación Celular , Citocinas , Hipocampo/metabolismo , Inflamación , Interleucina-1beta/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/inmunología , Células-Madre Neurales/fisiología , Neurogénesis , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Transcriptoma , Factor de Necrosis Tumoral alfa
15.
Brain Behav Immun ; 74: 252-264, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30217534

RESUMEN

Understanding the long-term consequences of chronic inflammation in the hippocampus may help to develop therapeutic targets for the treatment of cognitive disorders related to stress, ageing and neurodegeneration. The hippocampus is particularly vulnerable to increases in the pro-inflammatory cytokine interleukin-1ß (IL-1ß), a mediator of neuroinflammation, with elevated levels implicated in the aetiology of neurodegenerative diseases such as Alzheimer's and Parkinson's, and in stress-related disorders such as depression. Acute increases in hippocampal IL-1ß have been shown to impair cognition and reduce adult hippocampal neurogenesis, the birth of new neurons. However, the impact of prolonged increases in IL-1ß, as evident in clinical conditions, on cognition has not been fully explored. Therefore, the present study utilized a lentiviral approach to induce long-term overexpression of IL-1ß in the dorsal hippocampus of adult male Sprague Dawley rats and examine its impact on cognition. Following three weeks of viral integration, pattern separation, a process involving hippocampal neurogenesis, was impaired in IL-1ß-treated rats in both object-location and touchscreen operant paradigms. This was coupled with a decrease in the number and neurite complexity of immature neurons in the hippocampus. Conversely, tasks involving the hippocampus, but not sensitive to disruption of hippocampal neurogenesis, including spontaneous alternation, novel object and location recognition were unaffected. Touchscreen operant visual discrimination, a cognitive task involving the prefrontal cortex, was largely unaffected by IL-1ß overexpression. In conclusion, these findings suggest that chronically elevated IL-1ß in the hippocampus selectively impairs pattern separation. Inflammatory-mediated disruption of adult hippocampal neurogenesis may contribute to the cognitive decline associated with neurodegenerative and stress-related disorders.


Asunto(s)
Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Animales , Hipocampo/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología
16.
Mar Drugs ; 16(6)2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925774

RESUMEN

Accumulating evidence demonstrates that dietary supplementation with functional food ingredients play a role in systemic and brain health as well as in healthy ageing. Conversely, deficiencies in calcium and magnesium as a result of the increasing prevalence of a high fat/high sugar "Western diet" have been associated with health problems such as obesity, inflammatory bowel diseases, and cardiovascular diseases, as well as metabolic, immune, and psychiatric disorders. It is now recognized that modulating the diversity of gut microbiota, the population of intestinal bacteria, through dietary intervention can significantly impact upon gut health as well as systemic and brain health. In the current study, we show that supplementation with a seaweed and seawater-derived functional food ingredient rich in bioactive calcium and magnesium (0.1% supplementation) as well as 70 other trace elements, significantly enhanced the gut microbial diversity in adult male rats. Given the significant impact of gut microbiota on health, these results position this marine multi-mineral blend (MMB) as a promising digestive-health promoting functional food ingredient.


Asunto(s)
Suplementos Dietéticos , Alimentos Funcionales , Microbioma Gastrointestinal/efectos de los fármacos , Minerales/farmacología , Algas Marinas/química , Animales , Conducta Animal/efectos de los fármacos , ADN Bacteriano/aislamiento & purificación , Microbioma Gastrointestinal/genética , Masculino , Minerales/química , Modelos Animales , ARN Ribosómico 16S/genética , Ratas , Ratas Sprague-Dawley
17.
Behav Res Methods ; 50(6): 2523-2530, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29520633

RESUMEN

The development of a touchscreen platform for rodent testing has allowed new methods for cognitive testing that have been back-translated from clinical assessment tools to preclinical animal models. This platform for cognitive assessment in animals is comparable to human neuropsychological tests such as those employed by the Cambridge Neuropsychological Test Automated Battery, and thus has several advantages compared to the standard maze apparatuses typically employed in rodent behavioral testing, such as the Morris water maze. These include improved translation of preclinical models, as well as high throughput and the automation of animal testing. However, these systems are relatively expensive, which can impede progress for researchers with limited resources. Here we describe a low-cost touchscreen operant chamber based on the single-board computer, Raspberry PiTM, which is capable of performing tasks similar to those supported by current state-of-the-art systems. This system provides an affordable alternative for cognitive testing in a touchscreen operant paradigm for researchers with limited funding.


Asunto(s)
Computadores , Condicionamiento Operante , Pruebas Neuropsicológicas , Interfaz Usuario-Computador , Animales , Periféricos de Computador , Roedores , Programas Informáticos
18.
Brain Behav Immun ; 66: 394-412, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28751020

RESUMEN

Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1ß on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1ß. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1ß. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function.


Asunto(s)
Encefalitis/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Neurogénesis , Neuronas/metabolismo , Animales , Encefalitis/terapia , Humanos , Células-Madre Neurales/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
19.
Int J Neuropsychopharmacol ; 19(6)2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26657646

RESUMEN

BACKGROUND: Chronic exposure to the glucocorticoid hormone corticosterone exerts cellular stress-induced toxic effects that have been associated with neurodegenerative and psychiatric disorders. Docosahexaenoic acid is a polyunsaturated fatty acid that has been shown to be of benefit in stress-related disorders, putatively through protective action in neurons. METHODS: We investigated the protective effect of docosahexaenoic acid against glucocorticoid hormone corticosterone-induced cellular changes in cortical cell cultures containing both astrocytes and neurons. RESULTS: We found that glucocorticoid hormone corticosterone (100, 150, 200 µM) at different time points (48 and 72 hours) induced a dose- and time-dependent reduction in cellular viability as assessed by methyl thiazolyl tetrazolium. Moreover, glucocorticoid hormone corticosterone (200 µM, 72 hours) decreased the percentage composition of neurons while increasing the percentage of astrocytes as assessed by ßIII-tubulin and glial fibrillary acidic protein immunostaining, respectively. In contrast, docosahexaenoic acid treatment (6 µM) increased docosahexaenoic acid content and attenuated glucocorticoid hormone corticosterone (200 µM)-induced cell death (72 hours) in cortical cultures. This translates into a capacity for docosahexaenoic acid to prevent neuronal death as well as astrocyte overgrowth following chronic exposure to glucocorticoid hormone corticosterone. Furthermore, docosahexaenoic acid (6 µM) reversed glucocorticoid hormone corticosterone-induced neuronal apoptosis as assessed by terminal deoxynucleotidyl transferase-mediated nick-end labeling and attenuated glucocorticoid hormone corticosterone-induced reductions in brain derived neurotrophic factor mRNA expression in these cultures. Finally, docosahexaenoic acid inhibited glucocorticoid hormone corticosterone-induced downregulation of glucocorticoid receptor expression on ßIII- tubulin-positive neurons. CONCLUSIONS: This work supports the view that docosahexaenoic acid may be beneficial in ameliorating stress-related cellular changes in the brain and may be of value in psychiatric disorders.

20.
Int J Neurosci ; 125(1): 70-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24628580

RESUMEN

It is well established that neuroinflammation is associated with the progression of many neurodegenerative diseases, including Parkinson's disease (PD). Activated microglia and elevated levels of pro-inflammatory cytokines such as interleukin-1ß (IL-1ß) have been found in the brain and cerebrospinal fluid of PD patients, suggesting that IL-1ß may be involved in the pathogenesis of this disease. This study aimed to knock down the expression of the interleukin-1 type 1 receptor (IL-1R1) to evaluate any potential therapeutic effect of limiting the action of IL-1ß in the substantia nigra following a unilateral intrastriatal 6-hydroxydopamine (6-OHDA) lesion in rats. Adult Sprague-Dawley rats received intranigral injections of shRNA specific for IL-1R1, followed 2 weeks later by intrastriatal 6-OHDA. Injection of IL-1R1 shRNA did not prevent 6-OHDA-induced loss of motor function or loss of nigral dopamine neurons. IL-1R1 expression was increased in the midbrain following 6-OHDA injection; this effect was attenuated in 6-OHDA-treated animals that had received IL-1R1 shRNA. These data suggest that while IL-1R1 was increased in 6-OHDA-treated animals and reduced following shRNA injection, the neurodegeneration induced by 6-OHDA was not mediated through IL-1R1.


Asunto(s)
Cuerpo Estriado/fisiología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/prevención & control , Receptores Tipo I de Interleucina-1/metabolismo , Adrenérgicos/toxicidad , Anfetaminas , Análisis de Varianza , Animales , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores Tipo I de Interleucina-1/genética , Conducta Estereotipada/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA