Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543422

RESUMEN

Poly-L-lactic acid (PLLA) implants have been used for bone fixation for decades. However, upon insertion, they can cause a foreign body reaction (FBR) that may lead to complications. On 15 December 2023, a systematic review was conducted to search for articles on the PubMed, MeSH term, and Scopus databases using the keywords 'PLLA' and 'foreign body reaction'. The articles were reviewed not only for the question of FBR, its severity, and the manifestation of symptoms but also for the type of implant and its location in the body, the species, and the number of individuals included. A total of 71 original articles were identified. Of these, two-thirds reported on in vivo trials, and one-third reported on clinical applications. The overall majority of the reactions were mild in more than half of the investigations. Symptoms of extreme and extensive FBR mainly include osteolysis, ganglion cysts, and swelling. The localization of PLLA implants in bone can often result in osteolysis due to local acidosis. This issue can be mitigated by adding hydroxyapatite. There should be no strong FBR when PLLA is fragmented to 0.5-4 µm by extracorporeal shock wave.

2.
Pharmaceutics ; 15(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37765150

RESUMEN

Implant-related infections are a significant concern in orthopedic surgery. A novel anti-infective implant coating made of bioresorbable polymer with silver nitrate was developed. A controlled release of silver ions into the vicinity of the prosthesis can be triggered on-demand by extracorporeal shock waves to effectively combat all clinically relevant microorganisms. Microscopy techniques were used to examine the effects of shock wave application on coated titanium discs. Cytotoxicity was measured using a fibroblast proliferation assay. The anti-infective effect was assessed by monitoring the growth curves of three bacterial strains and by conventional culture. Microscopic analysis confirmed surface disruption of the coatings, with a complete release of silver in the focus area after shock wave application. Spectrometry detected an increase in silver concentration in the surrounding of the discs that surpassed the minimum inhibitory concentration (MIC) for both S. epidermidis RP62A and E. coli ATCC 25922. The released silver demonstrated an anti-infective effect, significantly inhibiting bacterial growth, especially at 6% and 8% silver concentrations. Cytotoxicity testing showed decreasing fibroblast viability with increasing silver concentration in the coating, with 6% silver maintaining viability above 25%. Compared to a commonly used electroplated silver coating on the market, the new coating demonstrated superior antimicrobial efficacy and lower cytotoxicity.

3.
Pharmaceutics ; 15(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38140011

RESUMEN

Bacterial biofilms on foreign surfaces are considered a primary cause of implant-related infections, which are challenging to treat. A new implant coating was developed, containing anti-infective silver within a biocompatible polymer carrier substance. In addition to its passive effect on the implant surface, highly concentrated anti-infective silver can be released as needed via the application of high-energy shock waves. This intervention could be applied transcutaneously in a clinical setting without the need for additional surgery. We investigated the inhibition of biofilm formation and the effectiveness of eradication after activation of the coating via shock waves in an in vitro biofilm model using Staphylococcus epidermidis RP62A. This was performed via scanning electron microscopy and quantitative microbiology. Additionally, we examined the cytotoxicity of the new coating on normal human fibroblasts and Saos-2 osteoblast-like cells, depending on the silver concentration. All studies were compared to uncoated titanium surfaces Ti6Al4V and a conventional electroplated silver coating. Cytotoxicity toward normal human fibroblasts and Saos-2 osteoblast-like cells increased with higher silver content but remained tolerable at 6%. Compared to uncoated Ti6Al4V and the electroplated silver coating, the new coating with a silver content of 4% and 6% exhibited a significant reduction in adherent bacteria by a factor of approximately 1000. This was also evident via microscopic examination of the surface morphology of the biofilms. Furthermore, following shock wave activation, no bacteria were detectable on either the implant or in the surrounding fluid after a 24 h period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA