Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Med (Lond) ; 4(1): 117, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872007

RESUMEN

BACKGROUND: Mobile upright PET devices have the potential to enable previously impossible neuroimaging studies. Currently available options are imagers with deep brain coverage that severely limit head/body movements or imagers with upright/motion enabling properties that are limited to only covering the brain surface. METHODS: In this study, we test the feasibility of an upright, motion-compatible brain imager, our Ambulatory Motion-enabling Positron Emission Tomography (AMPET) helmet prototype, for use as a neuroscience tool by replicating a variant of a published PET/fMRI study of the neurocorrelates of human walking. We validate our AMPET prototype by conducting a walking movement paradigm to determine motion tolerance and assess for appropriate task related activity in motor-related brain regions. Human participants (n = 11 patients) performed a walking-in-place task with simultaneous AMPET imaging, receiving a bolus delivery of F18-Fluorodeoxyglucose. RESULTS: Here we validate three pre-determined measure criteria, including brain alignment motion artifact of less than <2 mm and functional neuroimaging outcomes consistent with existing walking movement literature. CONCLUSIONS: The study extends the potential and utility for use of mobile, upright, and motion-tolerant neuroimaging devices in real-world, ecologically-valid paradigms. Our approach accounts for the real-world logistics of an actual human participant study and can be used to inform experimental physicists, engineers and imaging instrumentation developers undertaking similar future studies. The technical advances described herein help set new priorities for facilitating future neuroimaging devices and research of the human brain in health and disease.


Brain imaging plays an important role in understanding how the human brain functions in both health and disease. However, traditional brain scanners often require people to remain still, limiting the study of the brain in motion, and excluding people who cannot remain still. To overcome this, our team developed an imager that moves with a person's head, which uses a suspended ring of lightweight detectors that fit to the head. Using our imager, we were able to obtain clear brain images of people walking in place that showed the expected brain activity patterns during walking. Further development of our imager could enable it to be used to better understand real-world brain function and behavior, enabling enhanced knowledge and treatment of neurological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA