Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 5): 1358-1372, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007825

RESUMEN

The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME.

2.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675627

RESUMEN

The abietane diterpenoid 7α-acetoxy-6ß-hydroxyroyleanone (Roy) isolated from Plectranthus grandidentatus demonstrates cytotoxicity across numerous cancer cell lines. To potentiate anticancer attributes, a series of semi-synthetic Roy derivatives were generated and examined computationally. ADMET predictions were used to evaluate drug-likeness and toxicity risks. The antineoplastic potential was quantified by PASS. The DFT models were used to assess their reactivity and stability. Molecular docking determined cancer-related protein binding. MS simulations examined ligand-protein stability. Additionally, network pharmacology was used to identify potential targets and signaling pathways. Favorable ADME attributes and acceptable toxicity profiles were determined for all compounds. Strong anticancer potential was shown across derivatives (Pa 0.819-0.879). Strategic modifications altered HOMO-LUMO gaps (3.39-3.79 eV) and global reactivity indices. Favorable binding was revealed against cyclin-dependent kinases, BCL-2, caspases, receptor tyrosine kinases, and p53. The ligand exhibited a stable binding pose in MD simulations. Network analysis revealed involvement in cancer-related pathways. In silico evaluations predicted Roy and derivatives as effective molecules with anticancer properties. Experimental progress is warranted to realize their chemotherapeutic potential.


Asunto(s)
Abietanos , Diterpenos , Simulación del Acoplamiento Molecular , Plectranthus , Humanos , Abietanos/química , Abietanos/farmacología , Plectranthus/química , Simulación por Computador , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Simulación de Dinámica Molecular , Estructura Molecular
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675294

RESUMEN

The work is devoted to preparing and characterizing the properties of photosensitive composites, based on chitosan proposed for photodynamic therapy. Chitosan films with a 5% addition of two BODIPY dyes were prepared by solution casting. These dyes are dipyrromethene boron derivatives with N-alkyl phthalimide substituent, differing in the presence of iodine atoms in positions 2 and 6 of the BODIPY core. The spectral properties of the obtained materials have been studied by infrared and UV-vis absorption spectroscopy and fluorescence, both in solutions and in a solid state. Surface properties were investigated using the contact angle measurement. The morphology of the sample has been characterized by Scanning Electron and Atomic Force Microscopy. Particular attention was paid to studying the protein absorption and kinetics of the dye release from the chitosan. Adding BODIPY to the chitosan matrix leads to a slight increase in hydrophilicity, higher structure heterogeneity, and roughness, than pure chitosan. The presence of iodine atoms in the BODIPY structure caused the bathochromic effect, but the emission quantum yield decreased in the composites. It has been found that BODIPY-doped chitosan interacts better with human serum albumin and acidic α-glycoprotein than unmodified chitosan. The release rate of dyes from films immersed in methanol depends on the iodine present in the structure.


Asunto(s)
Quitosano , Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Boro/química
4.
Anal Bioanal Chem ; 414(21): 6355-6370, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35511247

RESUMEN

The stability of psychotropic substances representing various drug groups important from the perspective of forensic chemistry, including benzodiazepines, antidepressants, carbamazepine, cocaine, and their selected metabolites, was investigated for 1 month in two alternative biological matrices, vitreous humor and liver homogenate. Three different thermal storage conditions (-20, 4, and 20 °C) were tested. Liquid chromatography-mass spectrometry (LC-MS) analysis was preceded by an effective solid-phase microextraction (SPME) procedure. The results were statistically analyzed using one-way ANOVA to find significant concentration variations over time. The results obtained allowed for dividing the analytes into four groups: stable under all tested conditions, only at -20 and 4 °C, only at 20 °C, and overall unstable. Nordiazepam, venlafaxine, and cocaine and its metabolites turned out to be the most unstable substances, while fluoxetine showed the highest storage stability in both matrices. The SPME/LC-MS method was comprehensively evaluated according to the principles of white analytical chemistry (WAC), which reconcile the greenness and functionality of the method. A close to 100% whiteness score proves its sustainability and suitability for the intended application.


Asunto(s)
Cocaína , Cuerpo Vítreo , Cromatografía Liquida , Cocaína/análisis , Hígado , Psicotrópicos/análisis , Microextracción en Fase Sólida/métodos , Cuerpo Vítreo/química
5.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886996

RESUMEN

In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.


Asunto(s)
Proteínas Sanguíneas , Quitosano , Reactivos de Enlaces Cruzados , Gelatina , Nanopartículas , Almidón , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Quitosano/química , Quitosano/metabolismo , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Gelatina/química , Gelatina/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Almidón/análogos & derivados , Almidón/química , Almidón/metabolismo
6.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163949

RESUMEN

MicroScale thermophoresis (MST) is a rapidly developing bioanalytical technique used routinely for the examination of ligand-target affinity. It has never been used so far for the analysis of acid-base dissociation and the determination of pKa constant. This work is the-proof-of-concept of this new idea. It demonstrates that the pKa values obtained from the thermophoretic data are consistent with the reference methods. As a result, the analytical potential and utility of the MST technology can become even greater, especially if the new detection system of thermophoretic movement will be developed in the future. Even now, taking into account the necessity to use fluorescence, the proposed method may be useful in many respects.

7.
Molecules ; 27(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35956959

RESUMEN

This article presents the first successful application of a capillary electrophoresis-microscale thermophoresis tandem technique (CE-MST) for determining the values of equilibrium constant, realized by connecting online the CE and MST instruments using a fused-silica capillary. The acid-base dissociation of fluorescein isothiocyanate, expressed by the acidity constant value (pKa), was used as a model. The measurement procedure consisted of introducing a mixture containing the analyte and a deliberately added interferent into the CE capillary, electrophoretic separation of the analyte from the interferent, the detection of the analyte with a CE-integrated detector, detection with a MST detector, and then stopping the flow temporarily by turning off the voltage source to conduct the thermophoretic measurement. The analysis of migration times, peak areas and MST responses obtained concurrently for the same sample allowed us to determine the pKa value using three independent methods integrated within one instrumentation. The analyte was effectively separated from the interferent, and the acidity values turned out to be consistent with each other. An attempt was also made to replace the standard commercial CE instrument with a home-made portable CE setup. As a result, the similar pKa value was obtained, at the same time proving the possibility of increasing cost efficiency and reducing energy consumption. Overall, the CE-MST technique has a number of limitations, but its unique analytical capabilities may be beneficial for some applications, especially when sample separation is needed prior to the thermophoretic measurement.


Asunto(s)
Ácidos , Electroforesis Capilar , Electroforesis Capilar/métodos , Fluoresceína , Isotiocianatos
8.
Molecules ; 26(20)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34684849

RESUMEN

In this paper, a novel procedure for preparing calibration solutions for capillary electrophoresis (CE)-based quantitative analysis is proposed. Our approach, named the automated hydrodynamically mediated technique (AHMT), uses a capillary and a pressure system to deliver the expected amount of working solution and diluent directly to a sample vial. As a result, calibration solutions are prepared automatically inside the CE instrument, without any or with minimal manual operation. Two different modes were tested: forward and reverse, differing in the direction of hydrodynamic flow. The calibration curves obtained for a model mixture of analytes using AHMT were thorough compared to the standard procedure based on manual pipetting. The results were consistent, though the volume of obtained calibration solutions and the potential risk of random errors were significantly minimized by AHMT. Its effectiveness was further enhanced by the application of SCIEX® nanoVials, reducing the actual volume of calibration solutions down to 10 µL.

9.
Molecules ; 26(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206879

RESUMEN

An original strategy to evaluate analytical procedures is proposed and applied to verify if the flow-based methods, generally favorable in terms of green chemistry, are competitive when their evaluation also relies on other criteria. To this end, eight methods for the determination of zinc in waters, including four flow-based ones, were compared and the Red-Green-Blue (RGB) model was exploited. This model takes into account several features related to the general quality of an analytical method, namely, its analytical efficiency, compliance with the green analytical chemistry, as well as practical and economic usefulness. Amongst the investigated methods, the best was the flow-based spectrofluorimetric one, and a negative example was that one involving a flow module, ICP ionization and MS detection, which was very good in analytical terms, but worse in relation to other aspects, which significantly limits its overall potential. Good assessments were also noted for non-flow electrochemical methods, which attract attention with a high degree of balance of features and, therefore, high versatility. The original attempt to confront several worldwide accepted analytical strategies, although to some extent subjective and with limitations, provides interesting information and indications, establishing a novel direction towards the development and evaluation of analytical methods.

10.
Molecules ; 26(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530389

RESUMEN

The Pulmonaria species (lungwort) are edible plants and traditional remedies for different disorders of the respiratory system. Our work covers a comparative study on biological actions in human blood plasma and cyclooxygenase-2 (COX-2) -inhibitory properties of plant extracts (i.e., phenolic-rich fractions) originated from aerial parts of P. obscura Dumort. and P. officinalis L. Phytochemical profiling demonstrated the abundance of phenolic acids and their derivatives (over 80% of the isolated fractions). Danshensu conjugates with caffeic acid, i.e., rosmarinic, lithospermic, salvianolic, monardic, shimobashiric and yunnaneic acids were identified as predominant components. The examined extracts (1-100 µg/mL) partly prevented harmful effects of the peroxynitrite-induced oxidative stress in blood plasma (decreased oxidative damage to blood plasma components and improved its non-enzymatic antioxidant capacity). The cellular safety of the extracts was confirmed in experimental models of blood platelets and peripheral blood mononuclear cells. COX-2 inhibitor screening evidently suggested a stronger activity of P. officinalis (IC50 of 13.28 and 7.24 µg/mL, in reaction with synthetic chromogen and physiological substrate (arachidonic acid), respectively). In silico studies on interactions of main components of the Pulmonaria extracts with the COX-2 demonstrated the abilities of ten compounds to bind with the enzyme, including rosmarinic acid, menisdaurin, globoidnan A and salvianolic acid H.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Ácido Peroxinitroso/efectos adversos , Fenoles/farmacología , Plasma/efectos de los fármacos , Pulmonaria/química , Simulación por Computador , Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/química , Humanos , Técnicas In Vitro , Lactatos/química , Lactatos/farmacología , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Fenoles/química , Fitoquímicos , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plasma/química
11.
Anal Bioanal Chem ; 412(3): 577-588, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31838556

RESUMEN

Acid-base properties of methyl orange, bromocresol green, bromophenol blue, and bromothymol blue were thoroughly investigated in the past due to their application as colorimetric pH indicators. However, it is still unknown how these properties change upon the supramolecular host-guest interactions. Owing to the growing interest in using supramolecular host-guest interactions to reach expected modification of various physicochemical properties of guests, we decided to address this question in the present article. We estimated the shifts of pKa values induced by diverse hosts (cyclodextrins, cucurbiturils, calixarenes, micelles, and serum albumin) and performed a thermodynamic analysis of the selected systems. To make a deeper insight, we confronted the aforementioned dyes with the other kinds of molecules studied by us in the past. In overall, the results obtained demonstrate a large multiplicity of possible pKa behaviors, their poor predictability, and the existence of subtle structure-acidity relationships. In addition, we observed three thermodynamically different mechanisms of pKa alteration. Therefore, more studies are needed to bring closer the promising perspective of a programmable acidity's tuning. Our methodology was based on capillary electrophoresis (CE) applied in two parallel variants: a classical method based on the fitting of a nonlinear function, and an alternative two-value method (TVM), which requires over twice less measurements to estimate pKa. To identify the optimal approach for further studies, both methods were comprehensively compared and discussed based on the RGB additive color model, a user-friendly scale that integrates three primary aspects of an analytical method: analytical performance, green chemistry, and practicality.

12.
Molecules ; 25(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331398

RESUMEN

Binding and transport of ligands is one of the most important functions of human blood serum proteins. Human serum albumin is found in plasma at the highest concentration. Because of this, it is important to study protein-drug interactions for this albumin. Since there is no single model describing this interaction, it is necessary to measure it for each active substance. Drug binding should also be studied in conditions that simulate pathological conditions of the body, i.e., after oxidative stress. Due to this, it is expected that the methods for testing these interactions need to be easy and fast. In this study, albumin immobilized on magnetic nanoparticles was successfully applied in the study of protein-drug binding. Ketoprofen was selected as a model drug and interactions were tested under normal conditions and artificially induced oxidative stress. The quality of obtained results for immobilized protein was confirmed with those for free albumin and literature data. It was shown that the type of magnetic core coverage does not affect the quality of the obtained results. In summary, a new, fast, effective, and universal method for testing protein-drug interactions was proposed, which can be performed in most laboratories.


Asunto(s)
Cetoprofeno/química , Nanopartículas de Magnetita/química , Estrés Oxidativo , Albúmina Sérica/química , Sitios de Unión , Proteínas Portadoras , Cromatografía Líquida de Alta Presión , Materiales Biocompatibles Revestidos , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Polisacáridos/química , Unión Proteica
13.
Anal Chem ; 91(16): 10343-10352, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31305064

RESUMEN

Evaluation of an analytical method is a fundamental problem in analytical chemistry, and it is never straightforward. In this article, we show a perspective for facing this issue using an original tool. We propose a model that allows one to evaluate any analytical method/procedure in a global manner. It refers to the RGB additive color model and uses three primary colors to represent three main attributes of the evaluated method: analytical performance - Red, compliance with the "green" chemistry principles - Green, and productivity/practical effectiveness - Blue. A final color of the method results from the additive synthesis of the primary colors. To simplify classifications, we propose the set of nine final colors of the method (white, magenta, cyan, yellow, red, green, blue, colorless/gray, and black). The model provides also a quantitative parameter, named the "method brilliance", which integrates all primary colors and treats them with varying importance, adjusted to the evaluation context and subjective user preferences. The evaluation is performed using standard Excel worksheets interpretable "at-a-glance" and adjustable to the particular method specifications. We discuss the opportunities offered by this model, potential obstacles, and related countermeasures, as well as future perspectives for its utilization. The paper shows also examples of using the model for the evaluation of real methods. We believe that the model can be applied not only in analytical science but also in other chemical subdisciplines.

14.
Molecules ; 24(12)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226759

RESUMEN

Sorbus domestica leaves are a traditionally used herbal medicine recommended for the treatment of oxidative stress-related diseases. Dry leaf extracts (standardized by LC-MS/MS and LC-PDA) and nine model activity markers (polyphenols), were tested in scavenging assays towards six in vivo-relevant oxidants (O2•-, OH•, NO•, H2O2, ONOO-, HClO). Ascorbic acid (AA) and Trolox (TX) were used as positive standards. The most active extracts were the diethyl ether and ethyl acetate fractions with activities in the range of 3.61-20.03 µmol AA equivalents/mg, depending on the assay. Among the model compounds, flavonoids were especially effective in OH• scavenging, while flavan-3-ols were superior in O2•- quenching. The most active constituents were quercetin, (-)-epicatechin, procyanidins B2 and C1 (3.94-24.16 µmol AA/mg), but considering their content in the extracts, isoquercitrin, (-)-epicatechin and chlorogenic acid were indicated as having the greatest influence on extract activity. The analysis of the synergistic effects between those three compounds in an O2•- scavenging assay demonstrated that the combination of chlorogenic acid and isoquercitrin exerts the greatest influence. The results indicate that the extracts possess a strong and broad spectrum of antioxidant capacity and that their complex composition plays a key role, with various constituents acting complementarily and synergistically.


Asunto(s)
Antioxidantes/química , Oxidantes/química , Plantas Medicinales/química , Sorbus/química , Antioxidantes/farmacología , Flavonoides/química , Flavonoides/farmacología , Humanos , Peróxido de Hidrógeno/química , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Fenoles/química , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem
15.
Molecules ; 24(10)2019 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31109114

RESUMEN

Human serum albumin (HSA) is one of the most frequently immobilized proteins on the surface of carriers, including magnetic nanoparticles. This is because the drug-HSA interaction study is one of the basic pharmacokinetic parameters determined for drugs. In spite of many works describing the immobilization of HSA and the binding of active substances, research describing the influence of the used support on the effectiveness of immobilization is missing. There are also no reports about the effect of the support drying method on the effectiveness of protein immobilization. This paper examines the effect of both the method of functionalizing the polymer coating covering magnetic nanoparticles (MNPs), and the drying methods for the immobilization of HSA. Albumin was immobilized on three types of aminated chitosan-coated nanoparticles with a different content of amino groups long distanced from the surface Fe3O4-CS-Et(NH2)1-3. The obtained results showed that both the synthesis method and the method of drying nanoparticles have a large impact on the effectiveness of immobilization. Due to the fact that the results obtained for Fe3O4-CS-Et(NH2)2 significantly differ from those obtained for the others, the influence of the geometry of the shell structure on the ability to bind HSA was also explained by molecular dynamics.


Asunto(s)
Quitosano/química , Materiales Biocompatibles Revestidos , Proteínas Inmovilizadas , Nanopartículas de Magnetita , Albúmina Sérica Humana , Adsorción , Aminación , Humanos , Proteínas Inmovilizadas/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Polímeros/química , Albúmina Sérica Humana/química , Solventes , Espectroscopía Infrarroja por Transformada de Fourier
16.
Electrophoresis ; 39(19): 2406-2409, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29998474

RESUMEN

Methcathinone (ephedrone), 4-methylmethcathinone (mephedrone), and 3-methylmethcathinone (metaphedrone) are toxicologically-important cathinone derivatives used commonly as designer drugs. In this work we show the first method allowing to separate simultaneously all these molecules in a chiral medium, ensuring good resolution between all enantiomers. Eight cyclodextrins have been tested as potential chiral selectors, the best results were obtained with 2-hydroxyethyl-ß-cyclodextrin, unreported so far for efficient separation of cathinones. After optimization, the method was calibrated and validated with and without the use of internal standard. The addition of standard improved an overall repeatability and precision, the use of electrophoretic mobility ratio was especially favorable (RSD < 1%). It was demonstrated that the method may be easily extended by introducing the additional cathinone-related drugs to the sample, maintaining satisfactory separation efficiency.


Asunto(s)
Electroforesis Capilar/métodos , Metanfetamina/análogos & derivados , Propiofenonas/aislamiento & purificación , beta-Ciclodextrinas/química , Límite de Detección , Modelos Lineales , Metanfetamina/análisis , Metanfetamina/química , Metanfetamina/aislamiento & purificación , Propiofenonas/análisis , Propiofenonas/química , Reproducibilidad de los Resultados , Estereoisomerismo
17.
Analyst ; 143(20): 4854-4859, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30225471

RESUMEN

We demonstrate that microscale thermophoresis can be easily coupled with capillary electrophoresis in an on-line flow system (CE-MST), offering new potential possibilities. It takes advantage of sample separation and miniaturization prior to thermo-optical/MST analysis. No instrument modification is required. The future perspective is discussed.

18.
Transfus Med Hemother ; 45(5): 347-354, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30498413

RESUMEN

BACKGROUND: To investigate i) the effects of Trolox® or mannitol, which represent two different classes of antioxidants, on oxidative changes generated in manually isolated red blood cells (RBCs) from citrate-phosphate-dextrose (CPD) preserved whole blood, followed by up to 20 days refrigerated storage, and ii) whether Trolox supplemented to the blood bank-manufactured saline-adenine-glucose-mannitol (SAGM) preserved RBC units would offer better storage conditions compared with SAGM alone. METHODS: The percentage of hemolysis and extracellular activity of lactate dehydrogenase (LDH) was measured to assess RBC membrane integrity. Lipid peroxidation, reduced glutathione (GSH) levels and total antioxidant capacity (TAC) were quantified by thiobarbituric acid-reactive substances (TBARS), Ellman's reagent and 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS.+) based assay, respectively. RESULTS: Trolox was little more effective than mannitol in protecting against progressive RBC hemolysis. Trolox (0.125-3.125 mmol/l) inhibited storage-induced leakage of LDH, lipid peroxidation, and to a lesser extent GSH depletion. Mannitol at these concentrations neither inhibited TBARS formation nor prevented GSH depletion. RBC units stored in SAGM-Trolox had significantly lower hemolysis, LDH leakage, and lipid peroxidation level compared to RBCs stored in SAGM. CONCLUSION: There is evidence of the beneficial effects of supplementing RBC-additive solutions with membrane-interacting antioxidants such as vitamin E analogues.

19.
Molecules ; 23(10)2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30261655

RESUMEN

The present study investigated the phenolic profile and biological activity of dry extracts from leaves of C. bullatus, C. zabelii and C. integerrimus-traditional medicinal and dietary plants-and evaluated their potential in adjunctive therapy of cardiovascular diseases. Complementary UHPLC-PDA-ESI-MS³, HPLC-PDA-fingerprint, Folin-Ciocalteu, and n-butanol/HCl assays of the extracts derived by fractionated extraction confirmed that they are rich in structurally diverse polyphenols (47 analytes, content up to 650.8 mg GAE/g dw) with proanthocyanidins (83.3⁻358.2 mg CYE/g) dominating in C. bullatus and C. zabelii, and flavonoids (53.4⁻147.8 mg/g) in C. integerrimus. In chemical in vitro tests of pro-inflammatory enzymes (lipoxygenase, hyaluronidase) inhibition and antioxidant activity (DPPH, FRAP), the extracts effects were dose-, phenolic- and extraction solvent-dependent. The most promising polyphenolic extracts were demonstrated to be effective antioxidants in a biological model of human blood plasma-at in vivo-relevant levels (1⁻5 µg/mL) they normalized/enhanced the non-enzymatic antioxidant capacity of plasma and effectively prevented peroxynitrite-induced oxidative/nitrative damage of plasma proteins and lipids. As demonstrated in cytotoxicity tests, the extracts were safe-they did not affect viability of human peripheral blood mononuclear cells. In conclusion, Cotoneaster leaves may be useful in development of natural-based products, supporting the treatment of oxidative stress/inflammation-related chronic diseases, including cardiovascular disorders.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inflamación/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Plasma/metabolismo , Polifenoles/farmacología , Rosaceae/química , Antioxidantes/farmacología , Humanos , Hialuronoglucosaminidasa/química , Técnicas In Vitro , Mediadores de Inflamación/metabolismo , Lipooxigenasas/química , Hojas de la Planta/química , Plasma/efectos de los fármacos , Sustancias Protectoras/farmacología
20.
Anal Chem ; 89(6): 3630-3638, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28207231

RESUMEN

Electrophoretic mobility is a basic parameter that describes the electromigration of an ionized particle, which is used in many fields of analytical and physicochemical science. Its determination by capillary electrophoresis (CE), using a routine method, is intrinsically affected by the generation of Joule heating, entailing a drop in viscosity and possible alteration of the degree of ionization, and also by other commonly overlooked effects: axial electric field distortion and voltage ramping. The objective of this work was to provide the first theoretical overview and experimental comparison of all accessible methods that could be used to prevent these sources of inaccuracy. We have discussed seven independent approaches: (i) extrapolation of mobility to the zero power, (ii) initial buffer resistance-based correction, (iii) rational cooling adjustment, (iv) elimination of the nonthermostated capillary part, (v) inter/extrapolation to the nominal temperature, (vi) internal standard-based correction, and (vii) simple recalculation based on the temperature rise. Two methodologies (v and vi) have been proposed for the first time. Furthermore, we have shown how some approaches can be further developed, obtaining several novel and more sophisticated methods, which are also included in the comparison. Our investigation will help researchers to choose the optimal approach. We have also demonstrated for the first time how to measure the independent impact of four different effects. The outcomes reveal the compensatory character of some phenomena and explain the highly diverse and unpredictable magnitude of the total errors. The use of a correction method seems crucial for ensuring the high reliability of CE-based analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA