Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 210(3): 343-351, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564365

RESUMEN

Rationale: Observational studies suggest that high-dose isoniazid may be efficacious in treating multidrug-resistant tuberculosis. However, its activity against Mycobacterium tuberculosis (M.tb) with katG mutations (which typically confer high-level resistance) is not established. Objectives: To characterize the early bactericidal activity (EBA) of high-dose isoniazid in patients with tuberculosis caused by katG-mutated M.tb. Methods: A5312 was a phase IIA randomized, open-label trial. Participants with tuberculosis caused by katG-mutated M.tb were randomized to receive 15 or 20 mg/kg isoniazid daily for 7 days. Daily sputum samples were collected for quantitative culture. Intensive pharmacokinetic sampling was performed on Day 6. Data were pooled across all A5312 participants for analysis (drug-sensitive, inhA-mutated, and katG-mutated M.tb). EBA was determined using nonlinear mixed-effects modeling. Measurements and Main Results: Of 80 treated participants, 21 had katG-mutated M.tb. Isoniazid pharmacokinetics were best described by a two-compartment model with an effect of NAT2 acetylator phenotype on clearance. Model-derived maximum concentration and area under the concentration-time curve in the 15 and 20 mg/kg groups were 15.0 and 22.1 mg/L and 57.6 and 76.8 mg ⋅ h/L, respectively. Isoniazid bacterial kill was described using an effect compartment and a sigmoidal maximum efficacy relationship. Isoniazid potency against katG-mutated M.tb was approximately 10-fold lower than in inhA-mutated M.tb. The highest dose of 20 mg/kg did not demonstrate measurable EBA, except against a subset of slow NAT2 acetylators (who experienced the highest concentrations). There were no grade 3 or higher drug-related adverse events. Conclusions: This study found negligible bactericidal activity of high-dose isoniazid (15-20 mg/kg) in the majority of participants with tuberculosis caused by katG-mutated M.tb. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Isoniazida , Mutación , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Isoniazida/farmacocinética , Isoniazida/administración & dosificación , Isoniazida/farmacología , Isoniazida/uso terapéutico , Humanos , Antituberculosos/farmacocinética , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Femenino , Masculino , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Adulto , Persona de Mediana Edad , Proteínas Bacterianas/genética , Catalasa/genética , Relación Dosis-Respuesta a Droga , Anciano , Pruebas de Sensibilidad Microbiana
2.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38376228

RESUMEN

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Asunto(s)
Mycobacterium tuberculosis , Nitroimidazoles , Oxazolidinonas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Linezolid/farmacología , Linezolid/uso terapéutico , Tuberculosis/tratamiento farmacológico , Nitroimidazoles/farmacología , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
3.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826442

RESUMEN

Maintaining safe and potent pharmaceutical drug levels is often challenging. Multidomain peptides (MDPs) assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery, yet their ability to extend release is typically limited by rapid drug diffusion. To overcome this challenge, we developed self-assembling boronate ester release (SABER) MDPs capable of engaging in dynamic covalent bonding with payloads containing boronic acids (BAs). As examples, we demonstrate that SABER hydrogels can prolong the release of five BA-containing small-molecule drugs as well as BA-modified insulin and antibodies. Pharmacokinetic studies revealed that SABER hydrogels extended the therapeutic effect of ganfeborole from days to weeks, preventing Mycobacterium tuberculosis growth better than repeated oral administration in an infection model. Similarly, SABER hydrogels extended insulin activity, maintaining normoglycemia for six days in diabetic mice after a single injection. These results suggest that SABER hydrogels present broad potential for clinical translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA