Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203170

RESUMEN

Respiratory viruses' detection is vitally important in coping with pandemics such as COVID-19. Conventional methods typically require laboratory-based, high-cost equipment. An emerging alternative method is Near-Infrared (NIR) spectroscopy, especially a portable one of the type that has the benefits of low cost, portability, rapidity, ease of use, and mass deployability in both clinical and field settings. One obstacle to its effective application lies in its common limitations, which include relatively low specificity and general quality. Characteristically, the spectra curves show an interweaving feature for the virus-present and virus-absent samples. This then provokes the idea of using machine learning methods to overcome the difficulty. While a subsequent obstacle coincides with the fact that a direct deployment of the machine learning approaches leads to inadequate accuracy of the modelling results. This paper presents a data-driven study on the detection of two common respiratory viruses, the respiratory syncytial virus (RSV) and the Sendai virus (SEV), using a portable NIR spectrometer supported by a machine learning solution enhanced by an algorithm of variable selection via the Variable Importance in Projection (VIP) scores and its Quantile value, along with variable truncation processing, to overcome the obstacles to a certain extent. We conducted extensive experiments with the aid of the specifically developed algorithm of variable selection, using a total of four datasets, achieving classification accuracy of: (1) 0.88, 0.94, and 0.93 for RSV, SEV, and RSV + SEV, respectively, averaged over multiple runs, for the neural network modelling of taking in turn 3 sessions of data for training and the remaining one session of an 'unknown' dataset for testing. (2) the average accuracy of 0.94 (RSV), 0.97 (SEV), and 0.97 (RSV + SEV) for model validation and 0.90 (RSV), 0.93 (SEV), and 0.91 (RSV + SEV) for model testing, using two of the datasets for model training, one for model validation and the other for model testing. These results demonstrate the feasibility of using portable NIR spectroscopy coupled with machine learning to detect respiratory viruses with good accuracy, and the approach could be a viable solution for population screening.


Asunto(s)
COVID-19 , Virus , Humanos , Algoritmos , COVID-19/diagnóstico , Habilidades de Afrontamiento , Aprendizaje Automático
2.
J Biomed Inform ; 135: 104213, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191830

RESUMEN

Medicine is a fast-moving field, and the number of medical publications has increased rapidly over recent years. How to find relevant information from this vast pool of research effectively and efficiently has therefore become highly challenges. Previous studies have demonstrated that data fusion can improve search performance if properly utilized. However, in most cases effectiveness is the only concern and efficiency is not considered. A fusion-based system is by nature more complicated and expensive computationally than other retrieval models such as BM25, because many component retrieval systems and an extra layer of fusion are required. The number of component retrieval systems involved is an important indicator of complexity of the fusion-based system. We aim to select the optimal k-subset of component retrieval systems for any given number k, to optimize both fusion performance and reduce the cost of data fusion. A clustering-based approach is proposed. First all the candidates are divided into clusters by the Chameleon clustering algorithm, then representatives from every cluster are chosen by Sequential Forward Selection for fusion. Evaluated with two datasets from TREC, the proposed method performs more effectively than the other baseline methods including the state-of-the-art subset selection method significantly. When either of the two typical fusion methods is used, an improvement rate of over 10% is observed for both measures Mean Average Precision and Recall-level Precision, and an improvement rate of over 5% is observed for both measures Precision at 10 document level and Mean Reciprocal Rank.


Asunto(s)
Algoritmos , Almacenamiento y Recuperación de la Información , Análisis por Conglomerados
3.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35891090

RESUMEN

The accurate recognition of activities is fundamental for following up on the health progress of people with dementia (PwD), thereby supporting subsequent diagnosis and treatments. When monitoring the activities of daily living (ADLs), it is feasible to detect behaviour patterns, parse out the disease evolution, and consequently provide effective and timely assistance. However, this task is affected by uncertainties derived from the differences in smart home configurations and the way in which each person undertakes the ADLs. One adjacent pathway is to train a supervised classification algorithm using large-sized datasets; nonetheless, obtaining real-world data is costly and characterized by a challenging recruiting research process. The resulting activity data is then small and may not capture each person's intrinsic properties. Simulation approaches have risen as an alternative efficient choice, but synthetic data can be significantly dissimilar compared to real data. Hence, this paper proposes the application of Partial Least Squares Regression (PLSR) to approximate the real activity duration of various ADLs based on synthetic observations. First, the real activity duration of each ADL is initially contrasted with the one derived from an intelligent environment simulator. Following this, different PLSR models were evaluated for estimating real activity duration based on synthetic variables. A case study including eight ADLs was considered to validate the proposed approach. The results revealed that simulated and real observations are significantly different in some ADLs (p-value < 0.05), nevertheless synthetic variables can be further modified to predict the real activity duration with high accuracy (R2(pred)>90%).


Asunto(s)
Actividades Cotidianas , Demencia , Algoritmos , Demencia/diagnóstico , Humanos , Análisis de los Mínimos Cuadrados
4.
Pers Ubiquitous Comput ; 26(2): 365-384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368316

RESUMEN

The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using kNN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.

5.
BMC Public Health ; 21(1): 1416, 2021 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-34275463

RESUMEN

BACKGROUND: Office work generally consists of high amounts of sedentary behaviour (SB) which has been associated with negative health consequences. We developed the "WorktivIty" mobile app to help office workers reduce their SB through self-monitoring and feedback on sedentary time, prompts to break sedentary time, and educational facts. The aim of this paper is to report the feasibility of delivering the Worktivity intervention to desk-based office workers in the workplace setting and describe methodological considerations for a future trial. METHODS: We conducted a three-arm feasibility cluster randomised controlled pilot study over an 8-week period with full time-desk based employees. Clustered randomisation was to one of three groups: Worktivity mobile app (MA; n = 20), Worktivity mobile app plus SSWD (MA+SSWD; n = 20), or Control (C; n = 16). Feasibility was assessed using measures of recruitment and retention, intervention engagement, intervention delivery, completion rates and usable data, adverse events, and acceptability. RESULTS: Recruitment of companies to participate in this study was challenging (8% of those contacted), but retention of individual participants within the recruited groups was high (81% C, 90% MA + SSWD, 95% MA). Office workers' engagement with the app was moderate (on average 59%). Intervention delivery was partially compromised due to diminishing user engagement and technical issues related to educational fact delivery. Sufficient amounts of useable data were collected, however either missing or unusable data were observed with activPAL™, with data loss increasing at each follow up time point. No serious adverse events were identified during the study. The majority of participants agreed that the intervention could be implemented within the workplace setting (65% MA; 72% MA + SSWD) but overall satisfaction with the intervention was modest (58% MA; 39% MA + SSWD). CONCLUSIONS: The findings suggest that, in principle, it is feasible to implement a mobile app-based intervention in the workplace setting however the Worktivity intervention requires further technical refinements before moving to effectiveness trials. Challenges relating to the initial recruitment of workplaces and maintaining user engagement with the mHealth intervention over time need to be addressed prior to future large-scale implementation. Further research is needed to identify how best to overcome these challenges.


Asunto(s)
Conducta Sedentaria , Telemedicina , Estudios de Factibilidad , Humanos , Proyectos Piloto , Lugar de Trabajo
6.
Sensors (Basel) ; 21(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209389

RESUMEN

The Internet of Things (IoT) is a key and growing technology for many critical real-life applications, where it can be used to improve decision making. The existence of several sources of uncertainty in the IoT infrastructure, however, can lead decision makers into taking inappropriate actions. The present work focuses on proposing a risk-based IoT decision-making framework in order to effectively manage uncertainties in addition to integrating domain knowledge in the decision-making process. A structured literature review of the risks and sources of uncertainty in IoT decision-making systems is the basis for the development of the framework and Human Activity Recognition (HAR) case studies. More specifically, as one of the main targeted challenges, the potential sources of uncertainties in an IoT framework, at different levels of abstraction, are firstly reviewed and then summarized. The modules included in the framework are detailed, with the main focus given to a novel risk-based analytics module, where an ensemble-based data analytic approach, called Calibrated Random Forest (CRF), is proposed to extract useful information while quantifying and managing the uncertainty associated with predictions, by using confidence scores. Its output is subsequently integrated with domain knowledge-based action rules to perform decision making in a cost-sensitive and rational manner. The proposed CRF method is firstly evaluated and demonstrated on a HAR scenario in a Smart Home environment in case study I and is further evaluated and illustrated with a remote health monitoring scenario for a diabetes use case in case study II. The experimental results indicate that using the framework's raw sensor data can be converted into meaningful actions despite several sources of uncertainty. The comparison of the proposed framework to existing approaches highlights the key metrics that make decision making more rational and transparent.


Asunto(s)
Toma de Decisiones , Internet de las Cosas , Actividades Humanas , Humanos , Medición de Riesgo , Incertidumbre
7.
Sensors (Basel) ; 21(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34833636

RESUMEN

The ability to monitor Sprained Ankle Rehabilitation Exercises (SPAREs) in home environments can help therapists ascertain if exercises have been performed as prescribed. Whilst wearable devices have been shown to provide advantages such as high accuracy and precision during monitoring activities, disadvantages such as limited battery life and users' inability to remember to charge and wear the devices are often the challenges for their usage. In addition, video cameras, which are notable for high frame rates and granularity, are not privacy-friendly. Therefore, this paper proposes the use and fusion of privacy-friendly and Unobtrusive Sensing Solutions (USSs) for data collection and processing during SPAREs in home environments. The present work aims to monitor SPAREs such as dorsiflexion, plantarflexion, inversion, and eversion using radar and thermal sensors. The main contributions of this paper include (i) privacy-friendly monitoring of SPAREs in a home environment, (ii) fusion of SPAREs data from homogeneous and heterogeneous USSs, and (iii) analysis and comparison of results from single, homogeneous, and heterogeneous USSs. Experimental results indicated the advantages of using heterogeneous USSs and data fusion. Cluster-based analysis of data gleaned from the sensors indicated an average classification accuracy of 96.9% with Neural Network, AdaBoost, and Support Vector Machine, amongst others.


Asunto(s)
Tobillo , Dispositivos Electrónicos Vestibles , Terapia por Ejercicio , Humanos , Monitoreo Fisiológico , Radar
8.
Sensors (Basel) ; 20(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291592

RESUMEN

The desire to remain living in one's own home rather than a care home by those in need of 24/7 care is one that requires a level of understanding for the actions of an environment's inhabitants. This can potentially be accomplished with the ability to recognise Activities of Daily Living (ADLs); however, this research focuses first on producing an unobtrusive solution for pose recognition where the preservation of privacy is a primary aim. With an accurate manner of predicting an inhabitant's poses, their interactions with objects within the environment and, therefore, the activities they are performing, can begin to be understood. This research implements a Convolutional Neural Network (CNN), which has been designed with an original architecture derived from the popular AlexNet, to predict poses from thermal imagery that have been captured using thermopile infrared sensors (TISs). Five TISs have been deployed within the smart kitchen in Ulster University where each provides input to a corresponding trained CNN. The approach is evaluated using an original dataset and an F1-score of 0.9920 was achieved with all five TISs. The limitations of utilising a ceiling-based TIS are investigated and each possible permutation of corner-based TISs is evaluated to satisfy a trade-off between the number of TISs, the total sensor cost and the performances. These tests are also promising as F1-scores of 0.9266, 0.9149 and 0.8468 were achieved with the isolated use of four, three, and two corner TISs, respectively.


Asunto(s)
Actividades Cotidianas , Redes Neurales de la Computación , Humanos , Monitoreo Fisiológico
9.
Sensors (Basel) ; 20(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230844

RESUMEN

Human activity recognition (HAR) is a popular field of study. The outcomes of the projects in this area have the potential to impact on the quality of life of people with conditions such as dementia. HAR is focused primarily on applying machine learning classifiers on data from low level sensors such as accelerometers. The performance of these classifiers can be improved through an adequate training process. In order to improve the training process, multivariate outlier detection was used in order to improve the quality of data in the training set and, subsequently, performance of the classifier. The impact of the technique was evaluated with KNN and random forest (RF) classifiers. In the case of KNN, the performance of the classifier was improved from 55.9% to 63.59%.


Asunto(s)
Técnicas Biosensibles , Actividades Humanas , Monitoreo Fisiológico , Humanos , Aprendizaje Automático , Máquina de Vectores de Soporte
10.
Sensors (Basel) ; 20(5)2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182668

RESUMEN

Over the past few years, the Internet of Things (IoT) has been greatly developed with one instance being smart home devices gradually entering into people's lives. To maximize the impact of such deployments, home-based activity recognition is required to initially recognize behaviors within smart home environments and to use this information to provide better health and social care services. Activity recognition has the ability to recognize people's activities from the information about their interaction with the environment collected by sensors embedded within the home. In this paper, binary data collected by anonymous binary sensors such as pressure sensors, contact sensors, passive infrared sensors etc. are used to recognize activities. A radial basis function neural network (RBFNN) with localized stochastic-sensitive autoencoder (LiSSA) method is proposed for the purposes of home-based activity recognition. An autoencoder (AE) is introduced to extract useful features from the binary sensor data by converting binary inputs into continuous inputs to extract increased levels of hidden information. The generalization capability of the proposed method is enhanced by minimizing both the training error and the stochastic sensitivity measure in an attempt to improve the ability of the classifier to tolerate uncertainties in the sensor data. Four binary home-based activity recognition datasets including OrdonezA, OrdonezB, Ulster, and activities of daily living data from van Kasteren (vanKasterenADL) are used to evaluate the effectiveness of the proposed method. Compared with well-known benchmarking approaches including support vector machine (SVM), multilayer perceptron neural network (MLPNN), random forest and an RBFNN-based method, the proposed method yielded the best performance with 98.35%, 86.26%, 96.31%, 92.31% accuracy on four datasets, respectively.


Asunto(s)
Actividades Humanas/clasificación , Monitoreo Ambulatorio/métodos , Red Nerviosa , Adulto , Servicios de Atención de Salud a Domicilio , Humanos , Internet de las Cosas , Masculino , Procesos Estocásticos , Máquina de Vectores de Soporte
11.
Sensors (Basel) ; 20(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414064

RESUMEN

The recognition of activities of daily living (ADL) in smart environments is a well-known and an important research area, which presents the real-time state of humans in pervasive computing. The process of recognizing human activities generally involves deploying a set of obtrusive and unobtrusive sensors, pre-processing the raw data, and building classification models using machine learning (ML) algorithms. Integrating data from multiple sensors is a challenging task due to dynamic nature of data sources. This is further complicated due to semantic and syntactic differences in these data sources. These differences become even more complex if the data generated is imperfect, which ultimately has a direct impact on its usefulness in yielding an accurate classifier. In this study, we propose a semantic imputation framework to improve the quality of sensor data using ontology-based semantic similarity learning. This is achieved by identifying semantic correlations among sensor events through SPARQL queries, and by performing a time-series longitudinal imputation. Furthermore, we applied deep learning (DL) based artificial neural network (ANN) on public datasets to demonstrate the applicability and validity of the proposed approach. The results showed a higher accuracy with semantically imputed datasets using ANN. We also presented a detailed comparative analysis, comparing the results with the state-of-the-art from the literature. We found that our semantic imputed datasets improved the classification accuracy with 95.78% as a higher one thus proving the effectiveness and robustness of learned models.


Asunto(s)
Actividades Cotidianas/clasificación , Aprendizaje Profundo , Redes Neurales de la Computación , Semántica , Algoritmos , Humanos
12.
Sensors (Basel) ; 20(18)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911780

RESUMEN

Activity recognition has received considerable attention in many research fields, such as industrial and healthcare fields. However, many researches about activity recognition have focused on static activities and dynamic activities in current literature, while, the transitional activities, such as stand-to-sit and sit-to-stand, are more difficult to recognize than both of them. Consider that it may be important in real applications. Thus, a novel framework is proposed in this paper to recognize static activities, dynamic activities, and transitional activities by utilizing stacked denoising autoencoders (SDAE), which is able to extract features automatically as a deep learning model rather than utilize manual features extracted by conventional machine learning methods. Moreover, the resampling technique (random oversampling) is used to improve problem of unbalanced samples due to relatively short duration characteristic of transitional activity. The experiment protocol is designed to collect twelve daily activities (three types) by using wearable sensors from 10 adults in smart lab of Ulster University, the experiment results show the significant performance on transitional activity recognition and achieve the overall accuracy of 94.88% on three types of activities. The results obtained by comparing with other methods and performances on other three public datasets verify the feasibility and priority of our framework. This paper also explores the effect of multiple sensors (accelerometer and gyroscope) to determine the optimal combination for activity recognition.


Asunto(s)
Dispositivos Electrónicos Vestibles , Actividades Cotidianas , Adulto , Actividades Humanas , Humanos , Aprendizaje Automático , Reconocimiento en Psicología
13.
Dement Geriatr Cogn Disord ; 47(3): 131-139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31247624

RESUMEN

BACKGROUND: Technology has multiple potential applications to dementia from diagnosis and assessment to care delivery and supporting ageing in place. OBJECTIVES: To summarise key areas of technology development in dementia and identify future directions and implications. METHOD: Members of the US Alzheimer's Association Technology Professional Interest Area involved in delivering the annual pre-conference summarised existing knowledge on current and future technology developments in dementia. RESULTS: The main domains of technology development are as follows: (i) diagnosis, assessment and monitoring, (ii) maintenance of functioning, (iii) leisure and activity, (iv) caregiving and management. CONCLUSIONS: The pace of technology development requires urgent policy, funding and practice change, away from a narrow medical approach, to a holistic model that facilitates future risk reduction and prevention strategies, enables earlier detection and supports implementation at scale for a meaningful and fulfilling life with dementia.


Asunto(s)
Demencia/terapia , Tecnología/tendencias , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Demencia/diagnóstico , Humanos
14.
Sensors (Basel) ; 20(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905991

RESUMEN

In this paper, we focus on data-driven approaches to human activity recognition (HAR). Data-driven approaches rely on good quality data during training, however, a shortage of high quality, large-scale, and accurately annotated HAR datasets exists for recognizing activities of daily living (ADLs) within smart environments. The contributions of this paper involve improving the quality of an openly available HAR dataset for the purpose of data-driven HAR and proposing a new ensemble of neural networks as a data-driven HAR classifier. Specifically, we propose a homogeneous ensemble neural network approach for the purpose of recognizing activities of daily living within a smart home setting. Four base models were generated and integrated using a support function fusion method which involved computing an output decision score for each base classifier. The contribution of this work also involved exploring several approaches to resolving conflicts between the base models. Experimental results demonstrated that distributing data at a class level greatly reduces the number of conflicts that occur between the base models, leading to an increased performance prior to the application of conflict resolution techniques. Overall, the best HAR performance of 80.39% was achieved through distributing data at a class level in conjunction with a conflict resolution approach, which involved calculating the difference between the highest and second highest predictions per conflicting model and awarding the final decision to the model with the highest differential value.


Asunto(s)
Ambiente , Actividades Humanas , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas , Bases de Datos como Asunto , Humanos , Modelos Teóricos , Máquina de Vectores de Soporte
15.
Sensors (Basel) ; 19(14)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295850

RESUMEN

Activity recognition, a key component in pervasive healthcare monitoring, relies on classification algorithms that require labeled data of individuals performing the activity of interest to train accurate models. Labeling data can be performed in a lab setting where an individual enacts the activity under controlled conditions. The ubiquity of mobile and wearable sensors allows the collection of large datasets from individuals performing activities in naturalistic conditions. Gathering accurate data labels for activity recognition is typically an expensive and time-consuming process. In this paper we present two novel approaches for semi-automated online data labeling performed by the individual executing the activity of interest. The approaches have been designed to address two of the limitations of self-annotation: (i) The burden on the user performing and annotating the activity, and (ii) the lack of accuracy due to the user labeling the data minutes or hours after the completion of an activity. The first approach is based on the recognition of subtle finger gestures performed in response to a data-labeling query. The second approach focuses on labeling activities that have an auditory manifestation and uses a classifier to have an initial estimation of the activity, and a conversational agent to ask the participant for clarification or for additional data. Both approaches are described, evaluated in controlled experiments to assess their feasibility and their advantages and limitations are discussed. Results show that while both studies have limitations, they achieve 80% to 90% precision.


Asunto(s)
Atención a la Salud/métodos , Dedos/fisiología , Gestos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Humanos
16.
Sensors (Basel) ; 18(7)2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29987218

RESUMEN

Data annotation is a time-consuming process posing major limitations to the development of Human Activity Recognition (HAR) systems. The availability of a large amount of labeled data is required for supervised Machine Learning (ML) approaches, especially in the case of online and personalized approaches requiring user specific datasets to be labeled. The availability of such datasets has the potential to help address common problems of smartphone-based HAR, such as inter-person variability. In this work, we present (i) an automatic labeling method facilitating the collection of labeled datasets in free-living conditions using the smartphone, and (ii) we investigate the robustness of common supervised classification approaches under instances of noisy data. We evaluated the results with a dataset consisting of 38 days of manually labeled data collected in free living. The comparison between the manually and the automatically labeled ground truth demonstrated that it was possible to obtain labels automatically with an 80⁻85% average precision rate. Results obtained also show how a supervised approach trained using automatically generated labels achieved an 84% f-score (using Neural Networks and Random Forests); however, results also demonstrated how the presence of label noise could lower the f-score up to 64⁻74% depending on the classification approach (Nearest Centroid and Multi-Class Support Vector Machine).


Asunto(s)
Automatización/métodos , Actividades Humanas , Redes Neurales de la Computación , Teléfono Inteligente , Aprendizaje Automático Supervisado , Aceleración , Humanos , Máquina de Vectores de Soporte
17.
Alzheimers Dement ; 14(9): 1104-1113, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29937247

RESUMEN

INTRODUCTION: Technology interventions are showing promise to assist persons with dementia and their carers. However, low adoption rates for these technologies and ethical considerations have impeded the realization of their full potential. METHODS: Building on recent evidence and an iterative framework development process, we propose the concept of "ethical adoption": the deep integration of ethical principles into the design, development, deployment, and usage of technology. RESULTS: Ethical adoption is founded on five pillars, supported by empirical evidence: (1) inclusive participatory design; (2) emotional alignment; (3) adoption modelling; (4) ethical standards assessment; and (5) education and training. To close the gap between adoption research, ethics and practice, we propose a set of 18 practical recommendations based on these ethical adoption pillars. DISCUSSION: Through the implementation of these recommendations, researchers and technology developers alike will benefit from evidence-informed guidance to ensure their solution is adopted in a way that maximizes the benefits to people with dementia and their carers while minimizing possible harm.


Asunto(s)
Demencia/terapia , Desarrollo Industrial/ética , Demencia/psicología , Humanos , Aceptación de la Atención de Salud , Dispositivos de Autoayuda/ética
18.
Int J Behav Nutr Phys Act ; 14(1): 105, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28800736

RESUMEN

BACKGROUND: High levels of sedentary behaviour (SB) are associated with negative health consequences. Technology enhanced solutions such as mobile applications, activity monitors, prompting software, texts, emails and websites are being harnessed to reduce SB. The aim of this paper is to evaluate the effectiveness of such technology enhanced interventions aimed at reducing SB in healthy adults and to examine the behaviour change techniques (BCTs) used. METHODS: Five electronic databases were searched to identify randomised-controlled trials (RCTs), published up to June 2016. Interventions using computer, mobile or wearable technologies to facilitate a reduction in SB, using a measure of sedentary time as an outcome, were eligible for inclusion. Risk of bias was assessed using the Cochrane Collaboration's tool and interventions were coded using the BCT Taxonomy (v1). RESULTS: Meta-analysis of 15/17 RCTs suggested that computer, mobile and wearable technology tools resulted in a mean reduction of -41.28 min per day (min/day) of sitting time (95% CI -60.99, -21.58, I2 = 77%, n = 1402), in favour of the intervention group at end point follow-up. The pooled effects showed mean reductions at short (≤ 3 months), medium (>3 to 6 months), and long-term follow-up (>6 months) of -42.42 min/day, -37.23 min/day and -1.65 min/day, respectively. Overall, 16/17 studies were deemed as having a high or unclear risk of bias, and 1/17 was judged to be at a low risk of bias. A total of 46 BCTs (14 unique) were coded for the computer, mobile and wearable components of the interventions. The most frequently coded were "prompts and cues", "self-monitoring of behaviour", "social support (unspecified)" and "goal setting (behaviour)". CONCLUSION: Interventions using computer, mobile and wearable technologies can be effective in reducing SB. Effectiveness appeared most prominent in the short-term and lessened over time. A range of BCTs have been implemented in these interventions. Future studies need to improve reporting of BCTs within interventions and address the methodological flaws identified within the review through the use of more rigorously controlled study designs with longer-term follow-ups, objective measures of SB and the incorporation of strategies to reduce attrition. TRIAL REGISTRATION: The review protocol was registered with PROSPERO: CRD42016038187.


Asunto(s)
Conductas Relacionadas con la Salud , Promoción de la Salud/métodos , Conducta Sedentaria , Dispositivos Electrónicos Vestibles , Bases de Datos Factuales , Humanos , Aplicaciones Móviles , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
J Biomed Inform ; 62: 171-80, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27392647

RESUMEN

Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition.


Asunto(s)
Actigrafía/métodos , Algoritmos , Actividades Cotidianas , Humanos
20.
J Biomed Inform ; 63: 235-248, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27586863

RESUMEN

PURPOSE: Assistive technologies have been identified as a potential solution for the provision of elderly care. Such technologies have in general the capacity to enhance the quality of life and increase the level of independence among their users. Nevertheless, the acceptance of these technologies is crucial to their success. Generally speaking, the elderly are not well-disposed to technologies and have limited experience; these factors contribute towards limiting the widespread acceptance of technology. It is therefore important to evaluate the potential success of technologies prior to their deployment. MATERIALS AND METHODS: The research described in this paper builds upon our previous work on modelling adoption of assistive technology, in the form of cognitive prosthetics such as reminder apps and aims at identifying a refined sub-set of features which offer improved accuracy in predicting technology adoption. Consequently, in this paper, an adoption model is built using a set of features extracted from a user's background to minimise the likelihood of non-adoption. The work is based on analysis of data from the Cache County Study on Memory and Aging (CCSMA) with 31 features covering a range of age, gender, education and details of health condition. In the process of modelling adoption, feature selection and feature reduction is carried out followed by identifying the best classification models. FINDINGS: With the reduced set of labelled features the technology adoption model built achieved an average prediction accuracy of 92.48% when tested on 173 participants. CONCLUSIONS: We conclude that modelling user adoption from a range of parameters such as physical, environmental and social perspectives is beneficial in recommending a technology to a particular user based on their profile.


Asunto(s)
Simulación por Computador , Demencia/rehabilitación , Dispositivos de Autoayuda , Ambiente , Humanos , Calidad de Vida , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA