Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 4: e220, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25584900

RESUMEN

We developed an efficient system for delivering short interfering RNA (siRNA) to the liver by using α-tocopherol conjugation. The α-tocopherol-conjugated siRNA was effective and safe for RNA interference-mediated gene silencing in vivo. In contrast, when the 13-mer LNA (locked nucleic acid)-DNA gapmer antisense oligonucleotide (ASO) was directly conjugated with α-tocopherol it showed markedly reduced silencing activity in mouse liver. Here, therefore, we tried to extend the 5'-end of the ASO sequence by using 5'-α-tocopherol-conjugated 4- to 7-mers of unlocked nucleic acid (UNA) as a "second wing." Intravenous injection of mice with this α-tocopherol-conjugated chimeric ASO achieved more potent silencing than ASO alone in the liver, suggesting increased delivery of the ASO to the liver. Within the cells, the UNA wing was cleaved or degraded and α-tocopherol was released from the 13-mer gapmer ASO, resulting in activation of the gapmer. The α-tocopherol-conjugated chimeric ASO showed high efficacy, with hepatic tropism, and was effective and safe for gene silencing in vivo. We have thus identified a new, effective LNA-DNA gapmer structure in which drug delivery system (DDS) molecules are bound to ASO with UNA sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA