Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 139(9): 1340-1358, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34788382

RESUMEN

Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. In this study, we found that the silencing of protein phosphatase 2A (PP2A) directly blocks differentiation in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling revealed that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent, OSU-2S, in parallel with genetic approaches, we discovered that PP2A enforced c-Myc and p21 dependent terminal differentiation, proliferation arrest, and apoptosis in AML. Finally, we demonstrated that PP2A activation decreased leukemia-initiating stem cells, increased leukemic blast maturation, and improved overall survival in murine Tet2-/-Flt3ITD/WT and human cell-line derived xenograft AML models in vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Ratones Noqueados , Proteína Fosfatasa 2/genética , Proteínas Proto-Oncogénicas c-myc/genética
2.
Eur J Agron ; 153: None, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38304224

RESUMEN

The dynamics and responses to mulching management processes, which affect sustainability in tropical agroecosystems, remain poorly understood. Therefore, this study aims to evaluate and distinguish the short-and long-term effects of mulch of leguminous biomass on fertility of a tropical soil enriched with calcium. This experiment was conducted using the treatments: Long-term mulching (LTM) consisted of planting without mulch in 2019 in soil that had been mulched for six years previously, while short-term mulching (STM) consisted of planting without mulch for six years and with mulch only in 2019. LTM + STM consisted of planting in mulched soil for seven years (from 2013 to 2019), while LTM + synthetic nitrogen (LTM + sN) consisted of the LTM treatment with the addition of 150 kg N ha-1. The remaining treatments were STM + sN; LTM + STM + sN; bare soil with sN, and bare soil without sN as control. In areas with LTM the interactions between products derived from biomass, sN, and Ca resulted in higher total SOC and BS, while STM maintained soil moisture, decreased penetration resistance, and enhanced N uptake providing biological nitrogen able to replace sN for maize nutrition. The positive effects of short- and long-term mulching were cumulative as they increased accumulated N by maize in 163%, and maize grain yield by 125% (4.77-10.78 Mg ha-1) compared to cultivation with sN without mulch. Our results showed that interactions between continuos mulch of leguminous biomass, Ca and sN prevent degradation of agricultural land in Amazonian conditions. Therefore, this combination must be recommended to prevent Amazonian soil management, which in turn reduces the risk of new deforestation in Amazonian periphery.

3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982292

RESUMEN

Cancer represents the main cause of morbidity and mortality worldwide, constituting a serious health problem. In this context, melanoma represents the most aggressive and fatal type of skin cancer, with death rates increasing every year. Scientific efforts have been addressed to the development of inhibitors targeting the tyrosinase enzyme as potential anti-melanoma agents due to the importance of this enzyme in melanogenesis biosynthesis. Coumarin-based compounds have shown potential activity as anti-melanoma agents and tyrosinase inhibitors. In this study, coumarin-based derivatives were designed, synthesized, and experimentally evaluated upon tyrosinase. Compound FN-19, a coumarin-thiosemicarbazone analog, exhibited potent anti-tyrosinase activity, with an IC50 value of 42.16 ± 5.16 µM, being more active than ascorbic acid and kojic acid, both reference inhibitors. The kinetic study showed that FN-19 acts as a mixed inhibitor. Still, for this compound, molecular dynamics (MD) simulations were performed to determine the stability of the complex with tyrosinase, generating RMSD, RMSF, and interaction plots. Additionally, docking studies were performed to elucidate the binding pose at the tyrosinase, suggesting that the hydroxyl group of coumarin derivative performs coordinate bonds (bidentate) with the copper(II) ions at distances ranging from 2.09 to 2.61 Å. Then, MM/PBSA calculations revealed that van der Waals interactions are the most relevant intermolecular forces for complex stabilization. Furthermore, it was observed that FN-19 has a binding energy (ΔEMM) value similar to tropolone, a tyrosinase inhibitor. Therefore, the data obtained in this study will be useful for designing and developing novel coumarin-based analogs targeting the tyrosinase enzyme.


Asunto(s)
Cumarinas , Inhibidores Enzimáticos , Melanoma , Monofenol Monooxigenasa , Tirosina 3-Monooxigenasa , Humanos , Cumarinas/química , Cumarinas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Cinética , Melanoma/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Relación Estructura-Actividad , Tirosina 3-Monooxigenasa/antagonistas & inhibidores
4.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296374

RESUMEN

In this work we explore the structure of a G-rich DNA aptamer termed AT11-L2 (TGGTGGTGGTTGTTGTTGGTGGTGGTGGT; derivative of AT11) by evaluating the formation and stability of G-quadruplex (G4) conformation under different experimental conditions such as KCl concentration, temperature, and upon binding with a variety of G4 ligands (360A, BRACO-19, PDS, PhenDC3, TMPyP4). We also determined whether nucleolin (NCL) can be a target of AT11-L2 G4. Firstly, we assessed by circular dichroism, UV and NMR spectroscopies the formation of G4 by AT11-L2. We observed that, for KCl concentrations of 65 mM or less, AT11-L2 adopts hybrid or multiple topologies. In contrast, a parallel topology predominates for buffer containing 100 mM of KCl. The Tm of AT11-L2 in 100 mM of KCl is 38.9 °C, proving the weak stability of this sequence. We also found that upon titration with two molar equivalents of 360A, BRACO-19 and PhenDC3, the G4 is strongly stabilized and its topology is maintained, while the addition of 3.5 molar equivalents of TMPyP4 promotes the disruption of G4. The KD values between AT11-L2 G4, ligands and NCL were obtained by fluorescence titrations and are in the range of µM for ligand complexes and nM when adding NCL. In silico studies suggest that four ligands bind to the AT11-L2 G4 structure by stacking interactions, while the RBD1,2 domains of NCL interact preferentially with the thymines of AT11-L2 G4. Finally, AT11-L2 G4 co-localized with NCL in NCL-positive tongue squamous cell carcinoma cell line.


Asunto(s)
Aptámeros de Nucleótidos , Carcinoma de Células Escamosas , G-Cuádruplex , Neoplasias de la Lengua , Humanos , Ligandos , Aptámeros de Nucleótidos/química
5.
Nanomedicine ; 36: 102429, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174419

RESUMEN

Nanoparticles offer targeted delivery of drugs with minimal toxicity to surrounding healthy tissue and have great potential in the management of human papillomavirus (HPV)-related diseases. We synthesized lipid-modified AS1411 aptamers capable of forming nanoaggregates in solution containing Mg2+. The nanoaggregates presented suitable properties for pharmaceutical applications such as small size (100 nm), negative charge, and drug release. The nanoaggregates were loaded with acridine orange derivative C8 for its specific delivery into cervical cancer cell lines and HPV-positive tissue biopsies. This improved inhibition of HeLa proliferation and cell uptake without significantly affecting healthy cells. Finally, the nanoaggregates were incorporated in a gel formulation with promising tissue retention properties aiming at developing a local delivery strategy of the nanoaggregates in the female genital tract. Collectively, these findings suggest that the nanoformulation protocol has great potential for the delivery of both anticancer and antiviral agents, becoming a novel modality for cervical cancer management.


Asunto(s)
Antineoplásicos , Antivirales , Aptámeros de Nucleótidos , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Oligodesoxirribonucleótidos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antivirales/química , Antivirales/farmacocinética , Antivirales/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacocinética , Aptámeros de Nucleótidos/farmacología , Femenino , Células HeLa , Humanos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacocinética , Oligodesoxirribonucleótidos/farmacología , Neoplasias del Cuello Uterino/metabolismo
6.
Sensors (Basel) ; 21(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770321

RESUMEN

The fast spread of SARS-CoV-2 has led to a global pandemic, calling for fast and accurate assays to allow infection diagnosis and prevention of transmission. We aimed to develop a molecular beacon (MB)-based detection assay for SARS-CoV-2, designed to detect the ORF1ab and S genes, proposing a two-stage COVID-19 testing strategy. The novelty of this work lies in the design and optimization of two MBs for detection of SARS-CoV-2, namely, concentration, fluorescence plateaus of hybridization, reaction temperature and real-time results. We also identify putative G-quadruplex (G4) regions in the genome of SARS-CoV-2. A total of 458 nasopharyngeal and throat swab samples (426 positive and 32 negative) were tested with the MB assay and the fluorescence levels compared with the cycle threshold (Ct) values obtained from a commercial RT-PCR test in terms of test duration, sensitivity, and specificity. Our results show that the samples with higher fluorescence levels correspond to those with low Ct values, suggesting a correlation between viral load and increased MB fluorescence. The proposed assay represents a fast (total duration of 2 h 20 min including amplification and fluorescence reading stages) and simple way of detecting SARS-CoV-2 in clinical samples from the upper respiratory tract.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Humanos , Pandemias , ARN Viral , Sensibilidad y Especificidad
7.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684745

RESUMEN

The non-coding RNAs (ncRNA) are RNA transcripts with different sizes, structures and biological functions that do not encode functional proteins. RNA G-quadruplexes (rG4s) have been found in small and long ncRNAs. The existence of an equilibrium between rG4 and stem-loop structures in ncRNAs and its effect on biological processes remains unexplored. For example, deviation from the stem-loop leads to deregulated mature miRNA levels, demonstrating that miRNA biogenesis can be modulated by ions or small molecules. In light of this, we report several examples of rG4s in certain types of ncRNAs, and the implications of G4 stabilization using small molecules, also known as G4 ligands, in the regulation of gene expression, miRNA biogenesis, and miRNA-mRNA interactions. Until now, different G4 ligands scaffolds were synthesized for these targets. The regulatory role of the above-mentioned rG4s in ncRNAs can be used as novel therapeutic approaches for adjusting miRNA levels.


Asunto(s)
G-Cuádruplex/efectos de los fármacos , ARN no Traducido/química , Humanos , Secuencias Invertidas Repetidas/genética , Secuencias Invertidas Repetidas/fisiología , Ligandos , MicroARNs/genética , ARN Mensajero/genética , ARN no Traducido/metabolismo
8.
Cytotherapy ; 22(7): 369-376, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32303428

RESUMEN

BACKGROUND: Qualitative and quantitative defects in natural killer (NK) cells have been noted in patients with acute myeloid leukemia (AML), providing rationale for infusion of donor-derived NK cells. We previously showed that decitabine enhances expression of NKG2D ligands in AML with additive cytotoxicity when NK cells and Fc (fragment crystallizable region)-engineered CD33 monoclonal antibody (CD33mAb) was used. We conducted a phase 1 study evaluating decitabine and haploidentical NK cells in relapsed AML. Using patient samples from this study, we evaluated whether ex vivo donor-derived expanded NK cells with or without CD33mAb was effective in decitabine-treated AML. METHODS: Bone marrow aspirates were collected from patients at pre- and post-NK cell infusion. NK cells from healthy donors were expanded for 14 days using irradiated K562 feeder cells displaying membrane-bound IL-21 (mbIL-21). Patient samples were used to test in vitro activity of mbIL-21 NK cells ± CD33m Ab-dependent cellular cytotoxicity (ADCC) and AML patient derived xenograft (PDX) mice were developed to test in vivo activity. RESULTS: Upon incubation with primary AML blasts, mbIL-21 NK cells showed variable donor-dependent intra-cellular interferon-γ production, which increased with CD33mAb-coated AML. ADCC assays revealed mbIL-21 NK cells effectively lysed primary AML blasts with higher activity on CD33mAb-coated AML. Importantly, CD33mAb-dependent enhanced cytotoxicity by mbIL-21 NK cells was maintained in AML cells from patients even 24 days post-decitabine treatment. In vivo infusion of mbIL-21 NK cells in AML PDX mice, treated with CD33mAb, reduced the tumor burden. DISCUSSION: These data show the therapeutic utility of mbIL-21 NK cells that can be further potentiated by addition of CD33mAb in AML.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Membrana Celular/metabolismo , Citotoxicidad Inmunológica/efectos de los fármacos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Interleucinas/metabolismo , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Anciano , Animales , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Femenino , Humanos , Interleucina-2/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/terapia , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Unión Proteica/efectos de los fármacos , Ingeniería de Proteínas , Vidarabina/análogos & derivados , Vidarabina/farmacología
9.
Bioorg Chem ; 100: 103920, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32413624

RESUMEN

The G-quadruplex (G4)-forming sequence within the AS1411 derivatives with alternative nucleobases and backbones can improve the chemical and biological properties of AS1411. Zn(II) phthalocyanine (ZnPc) derivatives have potential as high-affinity G4 ligands because they have similar size and shape to the G-quartets. The interactions of four Zn(II) phthalocyanines with the G4 AS1411 aptamer and its derivatives were determined by biophysical techniques, molecular docking and gel electrophoresis. Cell viability assay was carried out to evaluate the antiproliferative effects of Zn(II) phthalocyanines and complexes. CD experiments showed structural changes after addition of ZnPc 4, consistent with multiple binding modes and conformations shown by NMR and gel electrophoresis. CD melting confirmed that ZnPc 2 and ZnPc 4, both containing eight positive charges, are able to stabilize the AT11 G4 structure (ΔTm > 30 °C and 18.5 °C, respectively). Molecular docking studies of ZnPc 3 and ZnPc 4 suggested a preferential binding to the 3'- and 5'-end, respectively, of the AT11 G4. ZnPc 3 and its AT11 and AT11-L0 complexes revealed pronounced cytotoxic effect against cervical cancer cells and no cytotoxicity to normal human cells. Zn(II) phthalocyanines provide the basis for the development of effective therapeutic agents as G4 ligands.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Indoles/química , Indoles/farmacología , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacología , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , G-Cuádruplex , Células HeLa , Humanos , Isoindoles , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Compuestos de Zinc
10.
Org Biomol Chem ; 17(11): 2992-3002, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30810582

RESUMEN

DNA aptamers represent a way to target cancer cells at a molecular level and continue to be developed with a view to improve treatment and imaging in cancer medicine. AT11-L0, derived from the DNA sequence AT11, forms a single major parallel G-quadruplex (G4) conformation and exhibits an anti-proliferative activity similar to that of AT11 and AS1411 aptamers. On the other side, acridine orange derivatives represent a valuable class of G4 ligands. Herein, we evaluate AT11-L0 G4 as a supramolecular carrier for the delivery of acridine ligands C3, C5 and C8 to HeLa cancer cells. The CD titrations suggest no changes in the chiroptical signal upon addition of an excess of ligands maintaining the parallel G4 topology and C8 stabilizes the structure for more than 20 °C. All the ligands exhibit high affinity (micromolar range) towards AT11-L0 G4, and the respective complexes against nucleolin (nanomolar range) suggesting that the ligands do not negatively affect the recognition of the nucleolin by AT11-L0 G4. NMR studies showed that AT11-L0 forms a G4 containing four G-tetrad layers. Ligand C8 binds AT11-L0 G4 through π-π stacking of the acridine moiety onto the top-tetrad with the involvement of additional interactions with the ligand's side chain and iodobenzene ring. In vitro, the complexes lowered the ligand's cytotoxicity towards non-malignant cells but have a weak inhibitory effect in HeLa cancer cells, except for the AT11-L0-C5 complex. All complexes are efficiently internalized into nucleolin-positive HeLa cells. Overall, these results suggest that AT11-L0 can act as an aptamer by targeting nucleolin and a delivery system of cytotoxic ligands for cervical cancer.


Asunto(s)
Acridinas/farmacología , Antineoplásicos/farmacología , Aptámeros de Nucleótidos/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Acridinas/química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HeLa , Humanos , Ligandos , Estructura Molecular , Relación Estructura-Actividad , Neoplasias del Cuello Uterino/patología
11.
Eur J Neurosci ; 46(3): 1906-1917, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28370471

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterised by progressive motor symptoms resulting from chronic loss of dopaminergic neurons in the nigrostriatal pathway. The over expression of the protein alpha-synuclein in the substantia nigra has been used to induce progressive dopaminergic neuronal loss and to reproduce key histopathological and temporal features of PD in animal models. However, the neurophysiological aspects of the alpha-synuclein PD model have been poorly characterised. Hereby, we performed chronic in vivo electrophysiological recordings in the corticostriatal circuit of rats injected with viral vector to over express alpha-synuclein in the right substantia nigra. Our model, previously shown to exhibit mild motor deficits, presented moderate dopaminergic cell loss but did not present prominent local field potential oscillations in the beta frequency range (11-30 Hz), considered a hallmark of PD, during the 9 weeks after onset of alpha-synuclein over expression. Spinal cord stimulation, a potential PD symptomatic therapy, was applied regularly from sixth to ninth week after alpha-synuclein over expression onset and had an inhibitory effect on the firing rate of corticostriatal neurons in both control and alpha-synuclein hemispheres. Dopamine synthesis inhibition at the end of the experiment resulted in severe parkinsonian symptoms such as akinesia and increased beta and high-frequency (>90 Hz) oscillations. These results suggest that the alpha-synuclein PD model with moderate level of dopaminergic depletion does not reproduce the prominent corticostriatal beta oscillatory activity associated to parkinsonian conditions.


Asunto(s)
Ritmo beta , Locomoción , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Masculino , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/fisiología , Sustancia Negra/metabolismo , Sustancia Negra/fisiopatología , alfa-Sinucleína/genética
12.
Trends Pharmacol Sci ; 45(9): 781-797, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39181737

RESUMEN

Human papillomaviruses (HPVs) are well-known causative agents of several cancers, yet selective therapies remain under investigation. Nanoparticles, for instance, are emerging as promising solutions to enhance the delivery and efficacy of therapeutic approaches. Despite the increasing number of nanotherapies offering advantages over current treatments, only one has advanced to clinical trials. This review highlights recent advances in nanotherapies for HPV-associated cancers, focusing on the delivery of small molecules, gene-targeted therapies, and vaccines. Some of the challenges faced in nanotherapies translation for clinical application are discussed, emphasizing the most used preclinical models that fail to accurately predict human responses, thereby hindering proper evaluation of nanotherapies. Additionally, we explore and discuss alternative promising new preclinical models that could pave the way for more effective nanotherapeutic evaluations.


Asunto(s)
Nanopartículas , Neoplasias , Infecciones por Papillomavirus , Humanos , Infecciones por Papillomavirus/terapia , Infecciones por Papillomavirus/virología , Neoplasias/terapia , Neoplasias/virología , Animales , Papillomaviridae , Terapia Genética/métodos , Nanomedicina/métodos , Sistemas de Liberación de Medicamentos/métodos , Virus del Papiloma Humano
13.
Colloids Surf B Biointerfaces ; 243: 114121, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39094208

RESUMEN

The incidence of head and neck cancers, particularly those associated with Human Papillomavirus (HPV) infections, has been steadily increasing. Conventional therapies exhibit limitations and drawbacks, prompting the exploration of new strategies over the years, with nanomedicine approaches, especially liposomes gaining relevance. Additionally, the functionalization of liposomes with aptamers enables selective delivery to target cells. For instance, AT11 can serve as a targeting moiety for cancer cells due to its high affinity for nucleolin, a protein overexpressed on the cancer cell's surface. In this study, liposomes functionalized with AT11 are proposed as drug delivery systems for imiquimod (IQ), aiming to maximize its potential as an anticancer agent for HPV-related cancers. To this end, firstly liposomes were produced through the ethanol injection method, functionalized with AT11-TEG-Cholesteryl, and characterized using dynamic light scattering. The obtained liposomes presented suitable properties for cancer therapy (with sizes from 120 to 140 nm and low polydispersity PDI < 0.16) and were further evaluated in terms of potential anticancer effects. AT11 IQ-associated liposomes allowed a selective delivery of IQ towards a tongue cancer cell line (UPCI-SCC-154) relative to the non-malignant cell line (Het1A). Specifically, they induced a selective reduction of the cell viability (∼52 % versus ∼113 %; p < 0.0001), proliferation (∼68 % versus ∼102 %; p<0.0001) and increased cell death (∼7-fold increase; p < 0.0001)). Additionally, they decreased the migration (from ∼24 % to ∼8 %; p < 0.0001) and invasion (to 11 %; p = 0.0047) capacities of the cancer cells. In summary, the produced liposomes represent a promising approach to enhance the anticancer potential of IQ in head and neck cancer, particularly in tongue cancer.


Asunto(s)
Antineoplásicos , Aptámeros de Nucleótidos , Sistemas de Liberación de Medicamentos , Neoplasias de Cabeza y Cuello , Imiquimod , Liposomas , Liposomas/química , Humanos , Aptámeros de Nucleótidos/química , Imiquimod/química , Imiquimod/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula
14.
ChemMedChem ; : e202400591, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39487698

RESUMEN

Novel 1,10-phenanthroline-2,9-bistriazoles derivatives have been synthesized by copper-catalyzed azide/alkyne cycloaddition reactions and assessed for their ability to bind and stabilize G-quadruplex (G4) structures. Ten novel compounds were evaluated using Förster resonance energy transfer (FRET) melting, circular dichroism (CD), and fluorescence spectroscopy on several G4 sequences. Biophysical characterization led to the identification of compounds 4a, 4b, and 5b as good G4 ligands of KRAS G4 sequences. The cell viability of all derivatives was also assessed, revealing weak effects. However, compound 2a exhibited cytotoxicity activity on A549 and H1299 cancer cells and low cytotoxicity towards non-malignant cells MRC-5 not connected with its G4-binding ability. Flow cytometry showed that 2a induced a cell viability decrease in S and G2/M phases for A549 and H1299; thus, more studies should be performed to explore the proteins involved in cell cycle regulation.

15.
Nat Commun ; 15(1): 5180, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890323

RESUMEN

Siglec-6 is a lectin receptor with restricted expression in the placenta, mast cells and memory B-cells. Although Siglec-6 is expressed in patients with chronic lymphocytic leukemia (CLL), its pathophysiological role has not been elucidated. We describe here a role for Siglec-6 in migration and adhesion of CLL B cells to CLL- bone marrow stromal cells (BMSCs) in vitro and compromised migration to bone marrow and spleen in vivo. Mass spectrometry analysis revealed interaction of Siglec-6 with DOCK8, a guanine nucleotide exchange factor. Stimulation of MEC1-002 CLL cells with a Siglec-6 ligand, sTn, results in Cdc42 activation, WASP protein recruitment and F-actin polymerization, which are all associated with cell migration. Therapeutically, a Siglec-6/CD3-bispecific T-cell-recruiting antibody (T-biAb) improves overall survival in an immunocompetent mouse model and eliminates CLL cells in a patient derived xenograft model. Our findings thus reveal a migratory role for Siglec-6 in CLL, which can be therapeutically targeted using a Siglec-6 specific T-biAb.


Asunto(s)
Adhesión Celular , Movimiento Celular , Lectinas , Leucemia Linfocítica Crónica de Células B , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Humanos , Animales , Lectinas/metabolismo , Ratones , Antígenos CD/metabolismo , Antígenos CD/genética , Femenino , Linfocitos B/metabolismo , Linfocitos B/inmunología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo , Masculino , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Food Chem ; 442: 138430, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241986

RESUMEN

The tyrosinase pathway takes part in the enzymatic process of food browning and is primarily responsible for food spoilage - manifesting itself from a decrease in its nutritional value to a deterioration of taste, which consequently leads to a gradual loss of shelf life. Finding safe and bio-based tyrosinase inhibitors and anti-browning agents may be of great importance in agriculture and food industries. Herein, we showed that Cyrene™ exhibits tyrosinase inhibitory activity (IC50: 268.2 µM), the 1.44 times higher than ascorbic acid (IC50: 386.5 µM). Binding mode studies demonstrated that the carbonyl oxygen of Cyrene™ coordinates with both copper ions. Surprisingly, both hydroxyl groups of Cyrene gem-diol perform a monodentate binding mode with both copper ions, at similar distances. This fact suggests that both compounds could have a similar binding mode and, as consequence, similar biological activities in tyrosinase inhibition assays and anti-browning activities.


Asunto(s)
Cobre , Monofenol Monooxigenasa , Reacción de Maillard , Iones , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular
17.
ChemMedChem ; : e202400438, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302068

RESUMEN

We herein describe the radiosynthesis of a 125I-labeled acridine orange derivative ([125I]-C8), acting as a G-quadruplex binder, and its biological evaluation in cervical cancer models, aiming to enlighten its potential as a radioligand for Auger Electron Radiopharmaceutical Therapy (AE-RPT) of cancer. [125I]-C8 was synthesized with a moderate radiochemical yield (ca. 60 %) by a [125I]iodo-destannylation reaction. Its evaluation in cervical cancer HeLa cells demonstrated that the radiocompound has a significant cellular internalization with a notorious accumulation in the cell nucleus. In line with these results, [125I]-C8 strongly compromised the viability of HeLa cells in a dose-dependent manner, inducing non-repairable DNA lesions that are most probably due to the AEs emitted by 125I in close proximity to  the DNA. Biodistribution studies in a murine HeLa xenograft model showed that [125I]-C8 has fast blood clearance and high in vivo stability but poor tumor uptake, after systemic administration. The respective supramolecular conjugate with the AS1411 aptamer ([125I]-C8/AS1411) led to a slower blood clearance in the same animal tumor model, although without improving the tumor uptake. To take advantage of the radiotoxicity of [125I]-C8 against cervical cancer cells other strategies need to be studied, based namely on alternative nanodelivery carriers and/or intratumoral injection approaches.

18.
Pharmaceutics ; 16(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39065561

RESUMEN

Human papillomavirus (HPV)-associated cervical cancer is the most common cancer among women worldwide. The treatment options are strongly related to increased infertility in women. Imiquimod (IQ) is an imidazoquinoline, which has proven antiviral effects against persistent HPV infection by activating immune cells via Toll-like receptors 7/8 when formulated in carriers, like nanogels, for topical use. An effective alternative to conventional therapies is the nanoparticle drug delivery system. We studied lipidic nanoparticles with IQ (Lipo IQ) and functionalized them with a DNA aptamer, AT11 (Lipo IQ AT11), to improve the selectivity for cervical cancer cells combined with the efficacy of essential oils. The formulations showed that the physicochemical properties are adequate for vaginal drug delivery and have antimicrobial activity at higher concentrations (with MIC50 starting from 0.625%). The final formulations exhibited cytotoxicity in cancer cells, enhanced by essential oils without affecting healthy cells, resulting in less than 10% cell viability in HeLa cells and over 60% in NHDF cells. Essential oils potentiate Lipo IQ's effectiveness, while AT11 increases the selectivity for cervical cancer cells. As suggested by the results of the permeation assay, the formulations were internalized by the cancer cells. Overall, the obtained results suggested that the synergistic effect of the essential oils and the nanosystem potentiate the cytotoxic effect of Lipo IQ and that Lipo IQ AT11 promotes selectivity towards cancer cells.

19.
Int J Biol Macromol ; 259(Pt 2): 129157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199539

RESUMEN

Oral cancer incidence and mortality are increasing over time. The most common therapies for oral cancers are surgery and radiotherapy, either used alone or combined, and immunotherapy can be also an option. Although there are several therapeutic options, none of them are completely effective, and in addition, there are numerous associated side effects. To overcome these limitations, researchers have been trying to reduce these drawbacks by using drug delivery systems that carry drugs for specific delivery to cancer cells. For that purpose, RNA-coated liposomes to selectively deliver the ligands C8 (acridine orange derivative) and dexamethasone to oral cancer cells were produced, characterized, and biologically evaluated. Firstly, the RNA structure and binding interaction with ligands (C8 and dexamethasone) were evaluated by circular dichroism (CD), thermal difference spectroscopy (TDS), nuclear magnetic resonance (NMR) and fluorescence titrations. The biophysical assays evidenced the formation of an RNA hairpin and duplex structure. Moreover, steady-state and time-resolved fluorescence intensity and anisotropy experiments show that C8 forms a complex with RNA and adopts an open conformation upon RNA binding. Then, RNA-coated liposomes were characterized by dynamic light scattering, and diameters near 160 nm were observed. Time-resolved anisotropy measurements of C8 loaded in RNA-functionalized liposomes indicate the co-existence of free C8 in solution (inside the liposome) and C8 bound to RNA at the external liposome surface. The RNA-functionalized liposomes loaded with C8 or dexamethasone mediated a significant reduction in the cell viability of malignant UPCI-SCC-154 cells while maintaining viable non-malignant NHDF cells. Additionally, the liposomes were able to internalize the cells, with higher uptake by the malignant cell line. Overall, the results obtained in this work can contribute to the development of new drug delivery systems based on RNA-coated liposomes.


Asunto(s)
Liposomas , Neoplasias de la Boca , Humanos , Liposomas/química , Sistemas de Liberación de Medicamentos , Línea Celular , Neoplasias de la Boca/tratamiento farmacológico , Dexametasona/farmacología
20.
Curr Top Med Chem ; 23(30): 2863-2876, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679877

RESUMEN

Cancer is responsible for high mortality rates worldwide, representing a serious health problem. In this sense, melanoma corresponds to the most aggressive type of skin cancer, being the cause of the highest death rates. Therapeutic strategies for the treatment of melanoma remain limited, with problems associated with toxicity, serious side effects, and mechanisms of resistance. The potential of natural products for the prevention and treatment of melanoma has been reported in different studies. Among these compounds, naphthoquinones (1,2-naphthoquinones and 1,4-naphthoquinones) stand out for their diverse pharmacological properties, including their antitumor activity. Thus, this review covers different studies found in the literature on the application of natural naphthoquinones targeting melanoma, providing information regarding the mechanisms of action investigated for these compounds. Finally, we believe that this review provides a comprehensive basis for the use of natural naphthoquinones against melanoma and that it may contribute to the discovery of promising compounds, specifically naphthoquinones, aimed at the treatment of this cancer.


Asunto(s)
Antineoplásicos , Melanoma , Naftoquinonas , Humanos , Melanoma/tratamiento farmacológico , Antineoplásicos/farmacología , Naftoquinonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA