Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Exp Physiol ; 98(10): 1432-45, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23748904

RESUMEN

Imbalances of energy homeostasis are often associated with cardiovascular complications. Previous work has shown that Gnasxl-deficient mice have a lean and hypermetabolic phenotype, with increased sympathetic stimulation of adipose tissue. The Gnasxl transcript from the imprinted Gnas locus encodes the trimeric G-protein subunit XLαs, which is expressed in brain regions that regulate energy homeostasis and sympathetic nervous system (SNS) activity. To determine whether Gnasxl knock-out (KO) mice display additional SNS-related phenotypes, we have now investigated the cardiovascular system. The Gnasxl KO mice were ∼20 mmHg hypertensive in comparison to wild-type (WT) littermates (P ≤ 0.05) and hypersensitive to the sympatholytic drug reserpine. Using telemetry, we detected an increased waking heart rate in conscious KOs (630 ± 10 versus 584 ± 12 beats min(-1), KO versus WT, P ≤ 0.05). Body temperature was also elevated (38.1 ± 0.3 versus 36.9 ± 0.4°C, KO versus WT, P ≤ 0.05). To investigate autonomic nervous system influences, we used heart rate variability analyses. We empirically defined frequency power bands using atropine and reserpine and verified high-frequency (HF) power and low-frequency (LF) LF/HF power ratio to be indicators of parasympathetic and sympathetic activity, respectively. The LF/HF power ratio was greater in KOs and more sensitive to reserpine than in WTs, consistent with elevated SNS activity. In contrast, atropine and exendin-4, a centrally acting agonist of the glucagon-like peptide-1 receptor, which influences cardiovascular physiology and metabolism, reduced HF power equally in both genotypes. This was associated with a greater increase in heart rate in KOs. Mild stress had a blunted effect on the LF/HF ratio in KOs consistent with elevated basal sympathetic activity. We conclude that XLαs is required for the inhibition of sympathetic outflow towards cardiovascular and metabolically relevant tissues.


Asunto(s)
Presión Sanguínea/fisiología , Temperatura Corporal , Subunidades alfa de la Proteína de Unión al GTP Gs/deficiencia , Subunidades alfa de la Proteína de Unión al GTP Gs/fisiología , Frecuencia Cardíaca/fisiología , Animales , Atropina/farmacología , Presión Sanguínea/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Cromograninas , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Glucagón/metabolismo , Reserpina/farmacología , Estrés Psicológico , Ponzoñas/farmacología
2.
Mol Metab ; 55: 101407, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844019

RESUMEN

OBJECTIVE: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective medications to reduce appetite and body weight. These actions are centrally mediated; however, the neuronal substrates involved are poorly understood. METHODS: We employed a combination of neuroanatomical, genetic, and behavioral approaches in the mouse to investigate the involvement of caudal brainstem cholecystokinin-expressing neurons in the effect of the GLP-1RA exendin-4. We further confirmed key neuroanatomical findings in the non-human primate brain. RESULTS: We found that cholecystokinin-expressing neurons in the caudal brainstem are required for the anorectic and body weight-lowering effects of GLP-1RAs and for the induction of GLP-1RA-induced conditioned taste avoidance. We further show that, while cholecystokinin-expressing neurons are not a direct target for glucose-dependent insulinotropic peptide (GIP), GIP receptor activation results in a reduced recruitment of these GLP-1RA-responsive neurons and a selective reduction of conditioned taste avoidance. CONCLUSIONS: In addition to disclosing a neuronal population required for the full appetite- and body weight-lowering effect of GLP-1RAs, our data also provide a novel framework for understanding and ameliorating GLP-1RA-induced nausea - a major factor for withdrawal from treatment.


Asunto(s)
Colecistoquinina/farmacología , Polipéptido Inhibidor Gástrico/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Animales , Apetito/efectos de los fármacos , Depresores del Apetito/farmacología , Glucemia/efectos de los fármacos , Exenatida/farmacología , Femenino , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/fisiología , Hipoglucemiantes/farmacología , Insulina/farmacología , Liraglutida/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo
3.
PLoS One ; 17(10): e0275604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36251705

RESUMEN

Here we show that central administration of pyroglutamylated arginine-phenylamine-amide peptide (QRFP/26RFa) increases both food intake and locomotor activity, without any significant effect on energy expenditure, thermogenesis or reward. Germline knock out of either of the mouse QRFP receptor orthologs, Gpr103a and Gpr103b, did not produce a metabolic phenotype. However, both receptors are required for the effect of centrally administered QRFP to increase feeding and locomotor activity. As central injection of QRFP activated orexin/hypocretin neurons in the lateral hypothalamus, we compared the action of QRFP and orexin on behaviour. Both peptides increased arousal and locomotor activity. However, while orexin increased consummatory behaviour, QRFP also affected other appetitive behaviours. Furthermore, the feeding but not the locomotor response to QRFP, was blocked by co-administration of an orexin receptor 1 antagonist. These results suggest that QRFP agonism induces both appetitive and consummatory behaviour, but only the latter is dependent on orexin/hypocretin receptor signalling.


Asunto(s)
Receptores de Orexina , Péptidos , Receptores Acoplados a Proteínas G , Animales , Ratones , Amidas , Compuestos de Anilina , Arginina , Péptidos y Proteínas de Señalización Intercelular , Locomoción , Neuropéptidos , Receptores de Orexina/metabolismo , Orexinas , Péptidos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Conducta Alimentaria
4.
Endocrinology ; 160(11): 2737-2747, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31074796

RESUMEN

To study the effects of an analog of the gut-produced hormone peptide YY (PYY3-36), which has increased selectivity for the Y2 receptor; specifically, to record its effects on food intake and on hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neuron activity. NNC0165-1273, a modified form of the peptide hormone PYY3-36 with potent selectivity at Y2 receptor (>5000-fold over Y1, 1250-fold over Y4, and 650-fold over Y5 receptor), was tested in vivo and in vitro in mouse models. NNC0165-1273 has fivefold lower relative affinity for Y2 compared with PYY3-36, but >250-, 192-, and 400-fold higher selectivity, respectively, for the Y1, Y4, and Y5 receptors. NNC0165-1273 produced a reduction in nighttime feeding at a dose at which PYY3-36 loses efficacy. The normal behavioral satiety sequence observed suggests that NNC0165-1273 is not nauseating and, instead, reduces food intake by producing early satiety. Additionally, NNC0165-1273 blocked ghrelin-induced cFos expression in NPY/AgRP neurons. In vitro electrophysiological recordings showed that, opposite to ghrelin, NNC0165-1273 hyperpolarized NPY/AgRP neurons and reduced action potential frequency. Administration of NNC0165-1273 via subcutaneous osmotic minipump caused a dose-dependent decrease in body weight and fat mass in an obese mouse model. Finally, NNC0165-1273 attenuated the feeding response when NPY/AgRP neurons were activated using ghrelin or more selectively with designer receptors. NNC0165-1273 is nonnauseating and stimulates a satiety response through, at least in part, a direct action on hypothalamic NPY/AgRP neurons. Modification of PYY3-36 to produce compounds with increased affinity to Y2 receptors may be useful as antiobesity therapies in humans.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Fragmentos de Péptidos/química , Péptido YY/química , Receptores de Neuropéptido Y/agonistas , Respuesta de Saciedad/efectos de los fármacos , Animales , Núcleo Arqueado del Hipotálamo/citología , Ghrelina , Masculino , Ratones , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Péptido YY/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-30425681

RESUMEN

Background: Glucose-sensing neurons are located in several parts of the brain, but are concentrated in the ventromedial nucleus of the hypothalamus (VMH). The importance of these VMH neurons in glucose homeostasis is well-established, however, little is known about their individual identity. In the present study, we identified a distinct glucose-sensing population in the VMH and explored its place in the glucose-regulatory network. Methods: Using patch-clamp electrophysiology on Pacap-cre::EYFP cells, we explored the glucose-sensing ability of the pituitary adenylate cyclase-activating peptide (PACAP) neurons both inside and outside the VMH. We also mapped the efferent projections of these neurons using anterograde and retrograde tracing techniques. Finally, to test the functionality of PACAPVMH in vivo, we used DREADD technology and measured systemic responses. Results: We demonstrate that PACAP neurons inside (PACAPVMH), but not outside the VMH are intrinsically glucose inhibited (GI). Anatomical tracing techniques show that PACAPVMH neurons project to several areas that can influence autonomic output. In vivo, chemogenetic stimulation of these neurons inhibits insulin secretion leading to reduced glucose tolerance, implicating their role in systemic glucose regulation. Conclusion: These findings are important as they identify, for the first time, a specific VMH neuronal population involved in glucose homeostasis. Identifying the different glucose-sensing populations in the VMH will help piece together the different arms of glucose regulation providing vital information regarding central responses to glucose metabolic disorders including hypoglycaemia.

6.
Front Pharmacol ; 6: 83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954200

RESUMEN

Several reports have shown that the periventricular region of the brain, including the paraventricular nucleus (PVN), is critical to sensing and responding to changes in plasma osmolality. Further studies also implicate the transient receptor potential ion channel, type V4 (TRPV4) channel in this homeostatic behavior. In previous work we have shown that TRPV4 ion channels couple to calcium-activated potassium channels in the PVN to decrease action potential firing frequency in response to hypotonicity. In the present study we investigated whether, similarly, intracerebroventricular (ICV) application of hypotonic solutions modulated cardiovascular parameters, and if so whether this was sensitive to a TRPV4 channel inhibitor. We found that ICV injection of 270 mOsmol artificial cerebrospinal fluid (ACSF) decreased mean blood pressure, but not heart rate, compared to naïve mice or mice injected with 300 mOsmol ACSF. This effect was abolished by treatment with the TRPV4 inhibitor RN1734. These data suggest that periventricular targets within the brain are capable of generating depressor action in response to TRPV4 ion channel activation. Potentially, in the future, the TRPV4 channel, or the TRPV4-KCa coupling mechanism, may serve as a therapeutic target for treatment of cardiovascular disease.

7.
Cell Metab ; 20(4): 639-49, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25176149

RESUMEN

Leptin is a critical regulator of metabolism, which acts on brain receptors (Lepr) to reduce energy intake and increase energy expenditure. Some of the cellular pathways mediating leptin's anorectic actions are identified, but those mediating the thermogenic effects have proven more difficult to decipher. We define a population of neurons in the dorsomedial hypothalamic nucleus (DMH) containing the RFamide PrRP, which is activated by leptin. Disruption of Lepr selectively in these cells blocks thermogenic responses to leptin and causes obesity. A separate population of leptin-insensitive PrRP neurons in the brainstem is required, instead, for the satiating actions of the gut-derived hormone cholecystokinin (CCK). Global deletion of PrRP (in a loxSTOPlox-PrRP mouse) results in obesity and attenuated responses to leptin and CCK. Cre-recombinase-mediated reactivation of PrRP in brainstem rescues the anorectic actions of CCK, but reactivation in the hypothalamus is required to re-establish the thermogenic effect of leptin.


Asunto(s)
Núcleo Hipotalámico Dorsomedial/metabolismo , Leptina/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Alelos , Animales , Colecistoquinina/metabolismo , Metabolismo Energético , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Obesidad/etiología , Hormona Liberadora de Prolactina/deficiencia , Hormona Liberadora de Prolactina/genética , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Termogénesis
8.
PLoS One ; 7(1): e29753, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253771

RESUMEN

The alternatively spliced trimeric G-protein subunit XLαs, which is involved in cAMP signalling, is encoded by the Gnasxl transcript of the imprinted Gnas locus. XLαs deficient mice show neonatal feeding problems, leanness, inertia and a high mortality rate. Mutants that survive to weaning age develop into healthy and fertile adults, which remain lean despite elevated food intake. The adult metabolic phenotype can be attributed to increased energy expenditure, which appears to be caused by elevated sympathetic nervous system activity. To better understand the changing phenotype of Gnasxl deficient mice, we compared XLαs expression in neonatal versus adult tissues, analysed its co-localisation with neural markers and characterised changes in the nutrient-sensing mTOR1-S6K pathway in the hypothalamus. Using a newly generated conditional Gnasxl lacZ gene trap line and immunohistochemistry we identified various types of muscle, including smooth muscle cells of blood vessels, as the major peripheral sites of expression in neonates. Expression in all muscle tissues was silenced in adults. While Gnasxl expression in the central nervous system was also developmentally silenced in some midbrain nuclei, it was upregulated in the preoptic area, the medial amygdala, several hypothalamic nuclei (e.g. arcuate, dorsomedial, lateral and paraventricular nuclei) and the nucleus of the solitary tract. Furthermore, expression was detected in the ventral medulla as well as in motoneurons and a subset of sympathetic preganglionic neurons of the spinal cord. In the arcuate nucleus of Gnasxl-deficient mice we found reduced activity of the nutrient sensing mTOR1-S6K signalling pathway, which concurs with their metabolic status. The expression in these brain regions and the hypermetabolic phenotype of adult Gnasxl-deficient mice imply an inhibitory function of XLαs in energy expenditure and sympathetic outflow. By contrast, the neonatal phenotype of mutant mice appears to be due to a transient role of XLαs in muscle tissues.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/deficiencia , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica/genética , Transducción de Señal/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Cromograninas , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Marcación de Gen , Sitios Genéticos/genética , Impresión Genómica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Insulina/farmacología , Leptina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Músculos/efectos de los fármacos , Músculos/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Neuropéptidos/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
9.
Curr Neuropharmacol ; 9(2): 262-77, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22131936

RESUMEN

The paraventricular nucleus (PVN) of the hypothalamus has been described as the "autonomic master controller". It co-ordinates critical physiological responses through control of the hypothalamic-pituitary-adrenal (HPA)-axis, and by modulation of the sympathetic and parasympathetic branches of the central nervous system. The PVN comprises several anatomical subdivisions, including the parvocellular/ mediocellular subdivision, which contains neurones projecting to the medulla and spinal cord. Consensus indicates that output from spinally-projecting sympathetic pre-autonomic neurones (SPANs) increases blood pressure and heart rate, and dysfunction of these neurones has been directly linked to elevated sympathetic activity during heart failure. The influence of spinally-projecting SPANs on cardiovascular function high-lights their potential as targets for future therapeutic drug development. Recent studies have demonstrated pharmacological control of these spinally-projecting SPANs with glutamate, GABA, nitric oxide, neuroactive steroids and a number of neuropeptides (including angiotensin, substance P, and corticotrophin-releasing factor). The underlying mechanism of control appears to be a state of tonic inhibition by GABA, which is then strengthened or relieved by the action of other modulators. The physiological function of spinally-projecting SPANs has been subject to some debate, and they may be involved in physiological stress responses, blood volume regulation, glucose regulation, thermoregulation and/or circadian rhythms. This review describes the pharmacology of PVN spinally-projecting SPANs and discusses their likely roles in cardiovascular control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA